

CITY OF FONTANA
SOUTH FONTANA MASTER DRAINAGE PLAN
MASTER PLAN DRAINAGE STUDY
FOR
EMPIRE CENTER AREA
FACILITIES:
P1, P2, P3, DZ-1, DZ-2, DZ-2A, DZ-3, DZ-4, DZ-5, DZ-6, & DZ-7

VOLUME NO. 1

PREPARED FOR: THE CITY OF FONTANA

STEVEN NAWAR, P.E. – PROJECT MANAGER

PREPARED BY: HALL & FOREMAN, INC.

**43513 RIDGE PARK DRIVE
TEMECULA, CA 92590
(951) 676-6726**

GERALD J. BARIL, P.E. – PROJECT MANAGER

HERMAN HOVAGIMYAN, P.E. – PROJECT ENGINEER

**JANUARY 2005
JN 04339**

APPROVED
SN 3/22/05

TABLE OF CONTENTS

VOLUME NO. 1

- INTRODUCTION**
- OVERVIEW AND DISCUSSION**
- FINDINGS**
- RECOMMENDATIONS**

APPENDICES

1. 100 – YEAR AMC 3 HYDROLOGY

- HYDROLOGIC DATA**
- Q-100 SUMMARY W/O DETENTION**
- Q-100 SUMMARY W/DETENTION**
- HYDROLOGY CALCULATIONS**
- HYDRAULIC CALCULATIONS**
 - **DECLEZ CHANNEL W/O DETENTION**
 - **JURUPA RCB W/O DETENTION**
 - **DECLEZ CHANNEL W/DETENTION**
 - **JURUPA RCB W/DETENTION**

2. 100-YEAR AMC 2 HYDROLOGY

- Q-100 SUMMARY W/O DETENTION**
- HYDROLOGY CALCULATIONS**
- HYDRAULIC CALCULATIONS**
 - **DECLEZ CHANNEL**
 - **JURUPA RCB**

VOLUME NO. 2

APPENDICES

3. 25 – YEAR AMC 2 HYDROLOGY

- Q-25 SUMMARY W/O DETENTION**
- HYDROLOGY CALCULATIONS**
- HYDRAULIC CALCULATIONS**
 - **DECLEZ CHANNEL**
 - **JURUPA RCB**
 - **SIERRA AVENUE LINE DZ-3 (REACHES A, B, C, & D)**
 - **JURUPA RCB**

4. MASTER DRAINAGE PLAN UPDATES

- SUMMARY**
- HYDRAULIC CALCULATIONS**

INTRODUCTION

Hall & Foreman, Inc. was retained by the City of Fontana, Community Development Department, to conduct a hydrology and hydraulic study for the 1,700-acre Empire Center in south Fontana. The purpose of this study is to evaluate the hydraulic capacity of the existing Jurupa Avenue reinforced concrete box (RCB) storm drain, existing Declez Channel, and the existing Sierra Avenue storm drain; based on an updated hydrology study to reflect the currently adopted Land Use Plan for the City of Fontana. This purpose of the study also includes evaluating the capacity of proposed Master Drainage Plan (MDP) facilities. The results of this study may be used to update the MDP, including Drainage Fees, adopted by the City in 1992.

Adopted Land use changes in this 1,700-acre watershed have greatly increased the runoff. For example, agriculture is now industrial and school is now single family. Consequently, several existing and proposed MDP storm drain facilities are no longer adequate to provide the adopted level of flood protection during the 25-year and 100-year flood events. Providing the required level of protection will also necessitate extending MDP facilities further upstream in the watershed.

OVERVIEW AND DISCUSSION

The existing MDP is based on a Rational Method runoff model for the 25-year and 100-year storm events. This study utilized Civildesign's Rational Method and Unit Hydrograph runoff computer software for those events. Unit hydrograph studies were also conducted for the Jurupa Avenue RCB, which has a tributary drainage area of more than one square mile. Unit hydrograph models are generally used for areas of one square mile or more. However, since the original MDP used the Rational Method, that methodology was retained for this study. Additionally, the unit hydrograph model resulted in higher runoff values. Design of the recommended detention basin for relief of the Jurupa RCB should be based on a unit hydrograph model that is calibrated to match the peak 100-year rational model runoff determined in this study.

An independent hydrology study was prepared based on the City's adopted Land Use Plan. Subareas were defined on the basis of land use and logical development based on the topography and street patterns. The level of protection criteria for establishing the need for MDP facilities is to maintain Q-25 within top of curb, Q-100 within right-of-way, and one 10-foot dry lane for the Q-10 on arterial highways. Facilities designed for less than the 100-year event must still provide 100-year level of protection. In that case, the street section must be able to carry the differential between the 100-year and the design storm selected for the drain. Soil classifications were taken from the San Bernardino County Hydrology Manual. The soil classification is primarily Type B, with limited areas of Type A. Group B soils have a moderate rate of infiltration and runoff, and group A has high infiltration rates and low runoff potential. Soil Groups C and D produce the maximum runoff. Antecedent Moisture Condition (AMC) 2 and 3 were used for the 100-year storm event. AMC 2 was used for the 25-year event.

Civildesign's WSPGW computer software version of Los Angeles County's WSPG (Water Surface Pressure Gradient) program was used for the hydraulic analysis of Declez Channel, Jurupa RCB, and the Sierra Avenue existing MDP facilities. A Manning's "n" value of 0.013 was used for the hydraulic analyses of these facilities.

FINDINGS

1. The existing RCB in Jurupa Avenue is deficient for the 100-year storm event.
2. The existing Sierra Avenue storm drain system is adequate, based on construction of the Sierra Avenue Detention Basin recommended in this Report. The basin will lower the hydraulic grade line in the Jurupa RCB to an elevation that will be compatible with the existing Sierra system.
3. Declez Channel is adequate, based on construction of the Sierra Avenue Detention Basin recommended in this Report. The resulting water surface elevation in the

channel is slightly above the extended channel walls constructed with the Oleander drain. However, this is not a significant issue when the available storage in the extensive upstream drainage facilities, and the short duration of this event are taken into consideration.

4. The adopted Master Drainage Plan requires upsizing, extensions upstream, and the addition of a new facility in Cypress Avenue.
5. Current City Policy requires land developers to provide a storm drain system designed to pickup and convey the 100-year storm event. This policy is in conflict with the criteria established for the Master Drainage Plan. The MDP criteria are essentially in conformance with FEMA regulations for providing 100-year level of protection. This level of protection criteria can be achieved with either a 100-year or 25-year storm drain design. The MDP systems include both 25-year and 100-year systems to achieve these criteria.

RECOMMENDATIONS

1. Construct a Regional Detention Basin adjacent to Sierra Avenue to provide relief for the Jurupa Avenue RCB.
2. The peak 100-year discharge from the Sierra Detention Basin shall be a maximum of 450 cubic feet per second. The hydraulic grade line control for the basin outlet pipe shall be the soffit elevation at the connection to the Jurupa RCB.
3. Consideration should be given for multiple use of the recommended Sierra Regional Detention Basin. Design options could include water quality, and recreational uses in addition to detention.

4. Revise the existing MDP facilities listed below to incorporate the findings of this study:

Line DZ – 2A

- (1) Upsize 500 feet of 42-inch MDP to 48-inch.
- (2) Upsize 650 feet of 39-inch MPD to 42-inch upstream (U/S) of the 48-inch.

Line DZ – 4

- (1) Upsize 660 feet of 36-inch MPD to 42-inch in Juniper Avenue.

Line DZ – 4A (New Facility in Cypress Avenue)

- (1) Add 750 feet of 42-inch MPD from the Jurupa Avenue RCB U/S.
- (2) Add 660 feet of 36-inch MPD U/S from the 42-inch.

Line DZ – 5

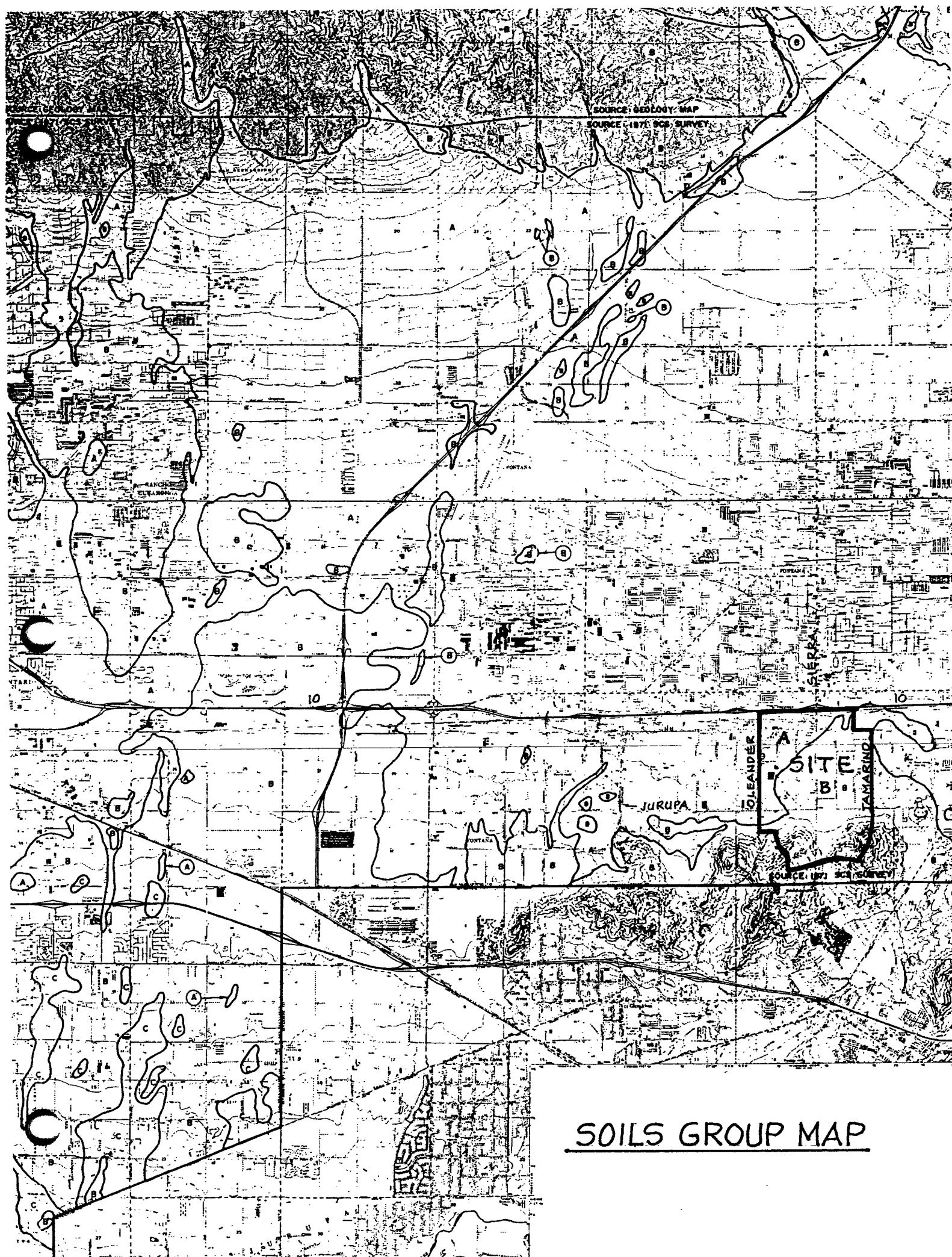
- (1) Upsize 1,720 feet of MDP 84-inch to 96-inch from Jurupa Avenue U/S.
- (2) Upsize 990 feet of MDP 84-inch to 90-inch U/S from 96-inch to Santa Ana Avenue.
- (3) Upsize 1,650 feet of MDP 39-inch to 48-inch U/S from Santa Ana Avenue.
- (4) Extend 48-inch MDP 1,000 feet U/S to Slover Avenue.

Line DZ – 6

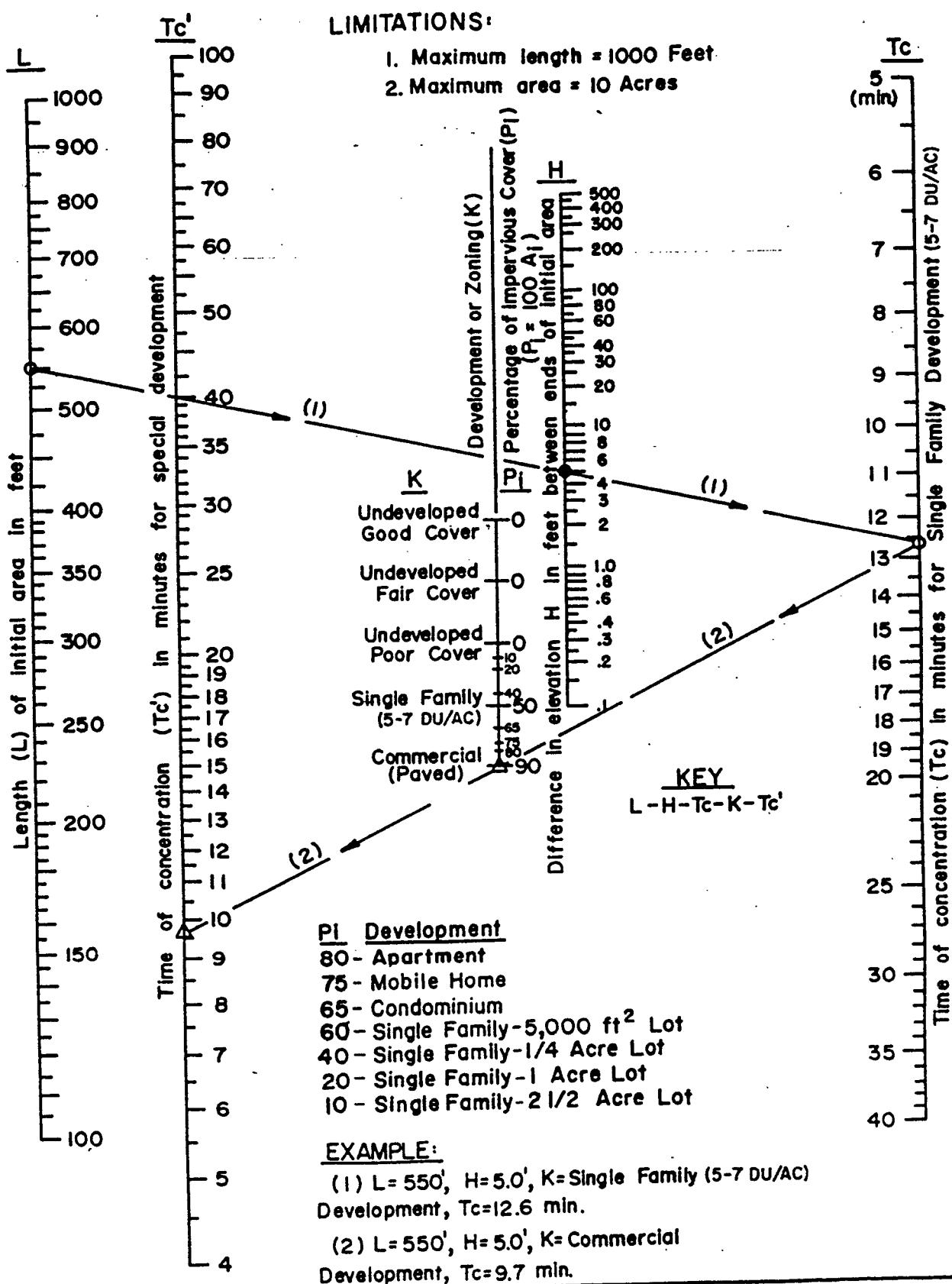
- (1) Upsize 660 feet of MDP from 39-inch to 54-inch U/S of Santa Ana Avenue.
- (2) Upsize 990 feet of MPD from 39-inch to 48-inch U/S of 54-inch.
- (3) Extend MDP 990 feet U/S with 42-inch to Slover Avenue.

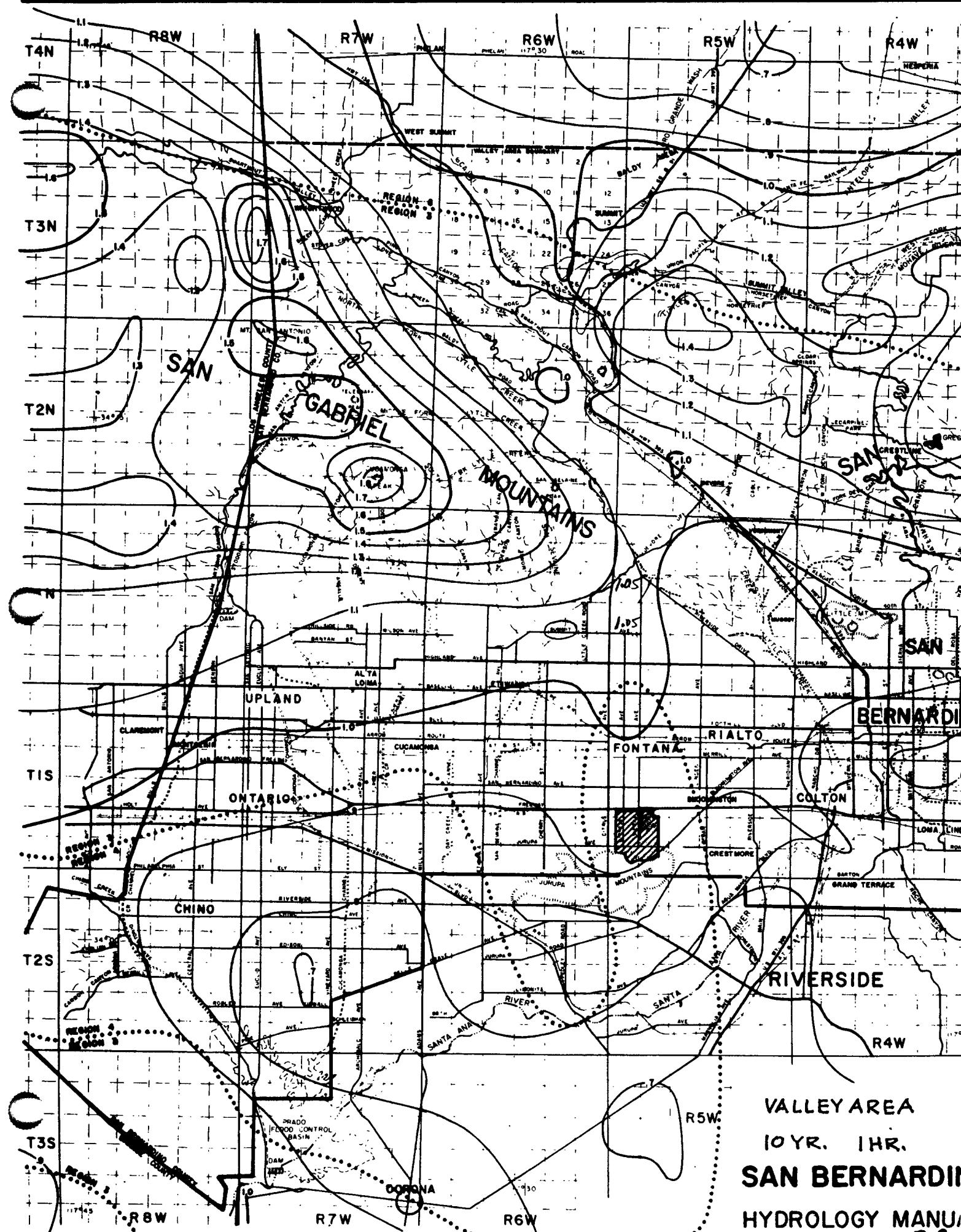
Line DZ – 7

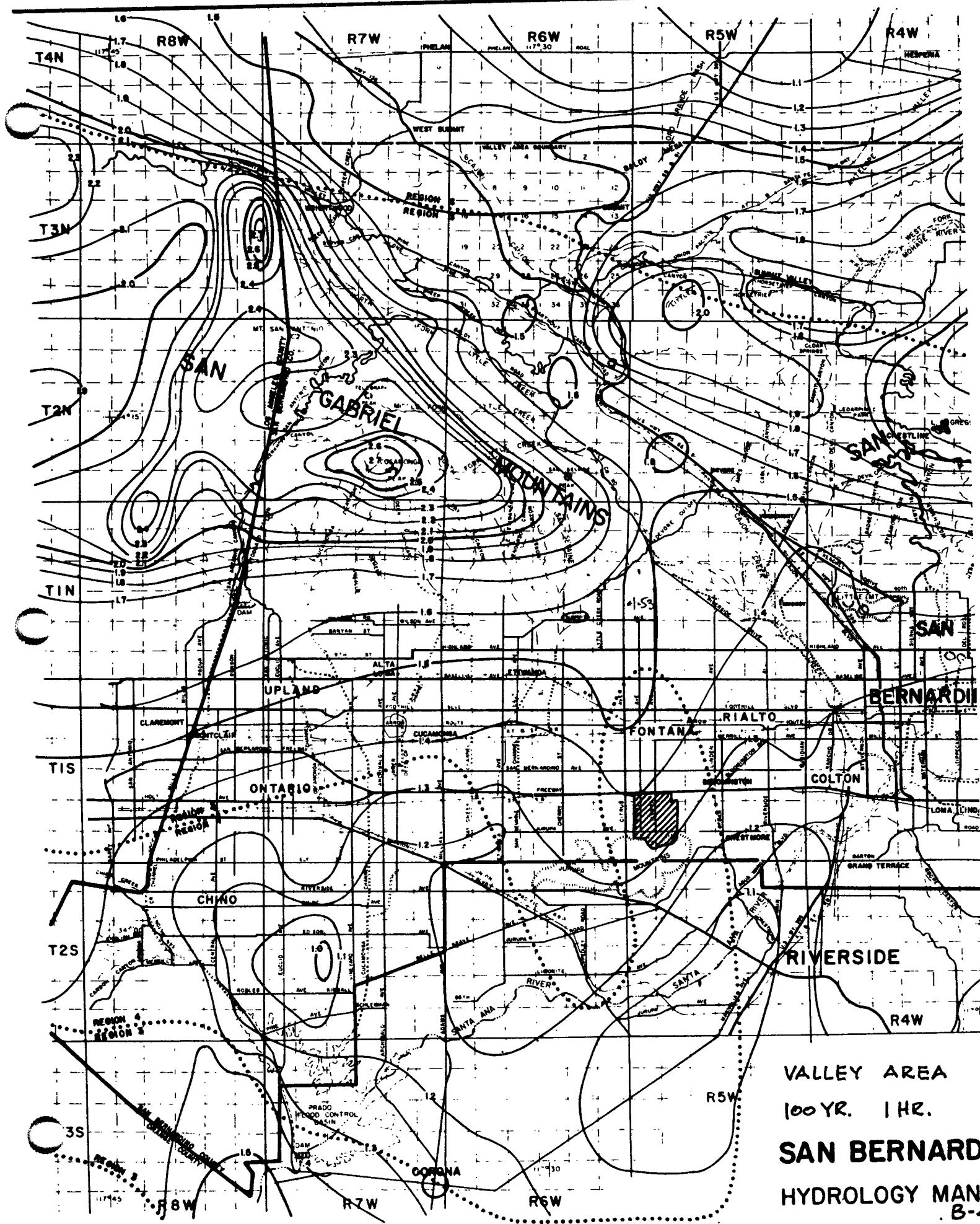
- (1) Upsize 660 feet of MDP from 42-inch to 54-inch U/S of Santa Ana Avenue.
- (2) Extend 990 feet of MDP from 42-inch to 48-inch U/S of 54-inch.
- (3) Extend MDP 990 feet U/S with 42-inch to Slover Avenue.

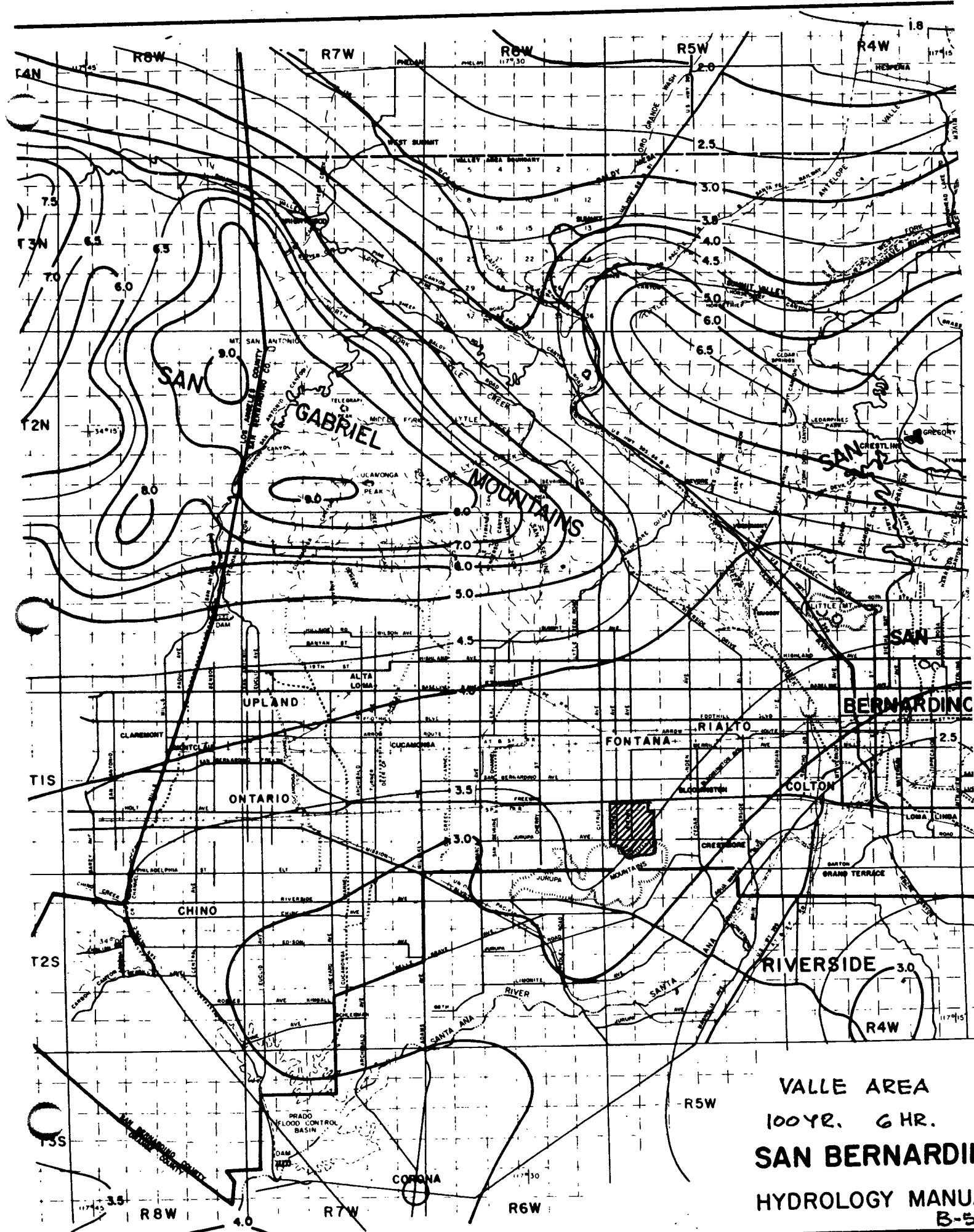

5. Revise the Master Drainage Plan Fees to reflect the changes recommended in this Study.
6. City Staff review Master Drainage Plan design criteria and develop a policy consistent with City land development requirements for storm drains.
7. Obtain City Council approval and adoption of Master Drainage Plan criteria as recommended by City Staff.
8. Update the entire Master Drainage Plan for South Fontana to reflect the currently adopted City Land Use Plan and City Policy on design criteria.

HYDROLOGY

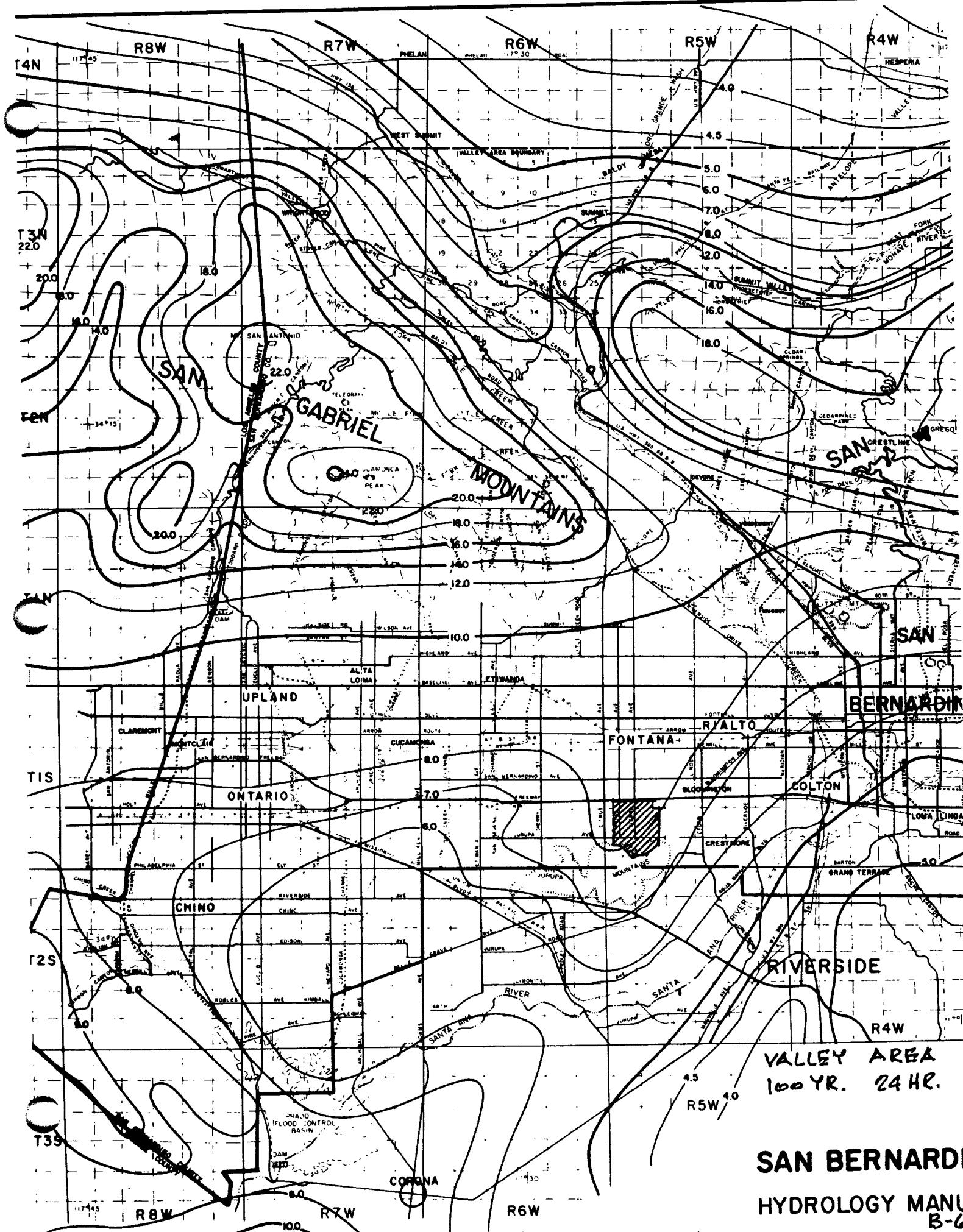


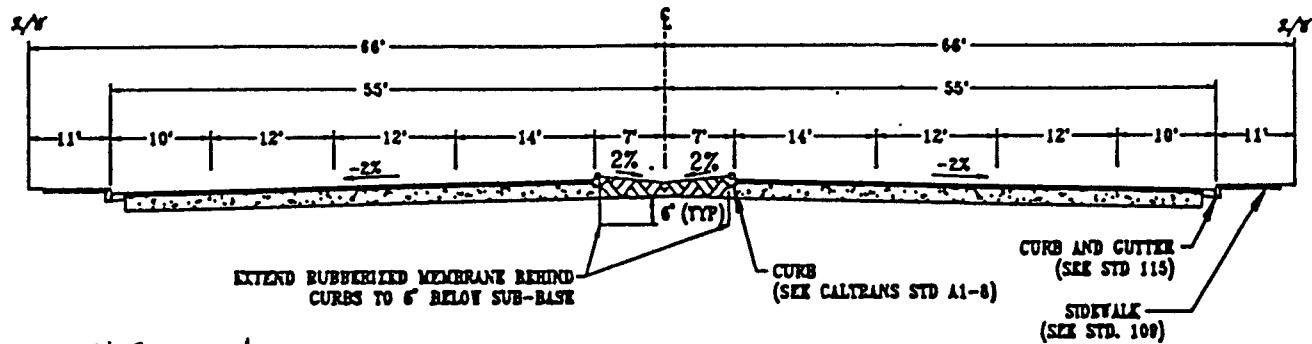

SAN BERNARDINO Fwy


10 SPT CO



SOILS GROUP MAP





VALLE AREA
100 YR. 6 HR.
SAN BERNARDIN
HYDROLOGY MANUAL
B-5

SAN BERNARDI HYDROLOGY MANU B-6

1/2 ST. 38.5'

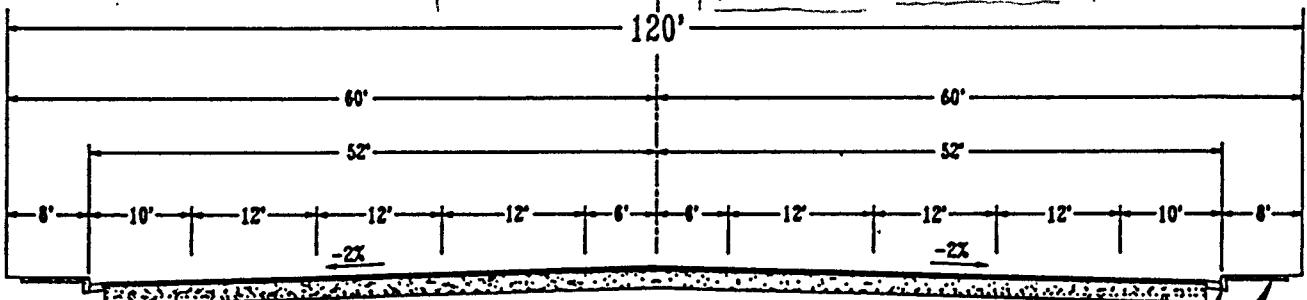
$D_{max} = 1.29'$

SLOWER

TYPICAL SECTION
WITH RAISED MEDIAN

$D_{max} = 0.94'$

SIERRA 1/2 ST. 39' W'L'Y


50' E'L'Y
 $D_{max} = 0.94'$

JURUPA
N'L'Y $1/2$ ST. = 27' $D_{max} = 0.98'$
S'L'Y " = 38' $D_{max} = 1.25'$

SANTA ANA
 $D_{max} = 0.92'$
1/8 ST. = 42'

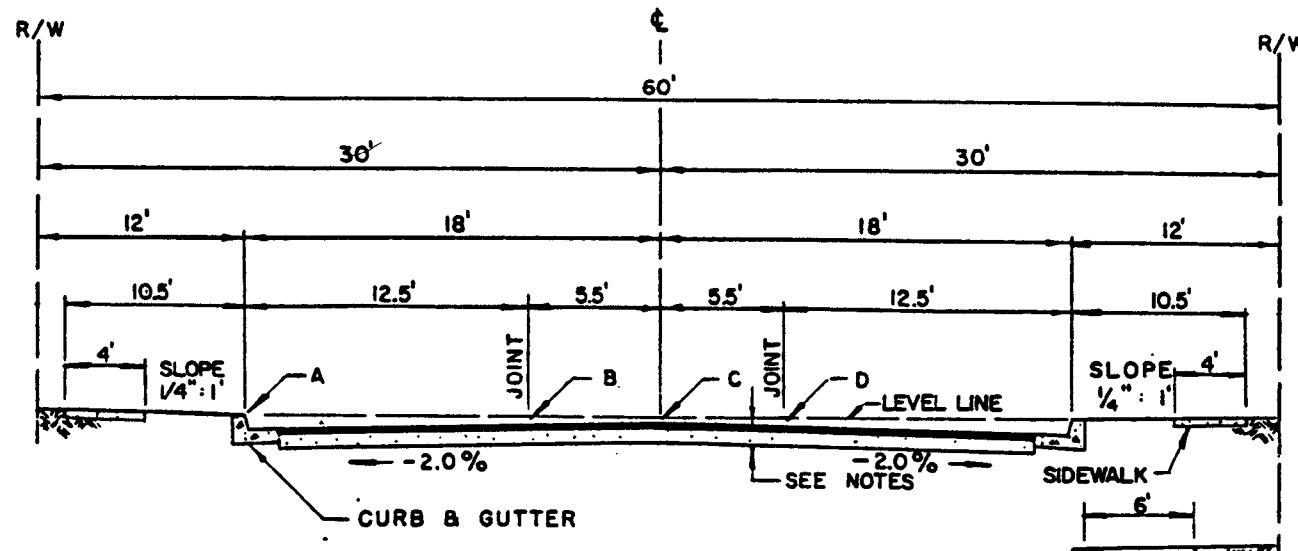
MIRAGO
PALMETTO
TAMARIND

JUNIPER
CYPRESS
OLEANDER

TYPICAL SECTION
WITH CONTINUOUS LEFT TURN LANE

SIDEWALK (SEE STD. 108)

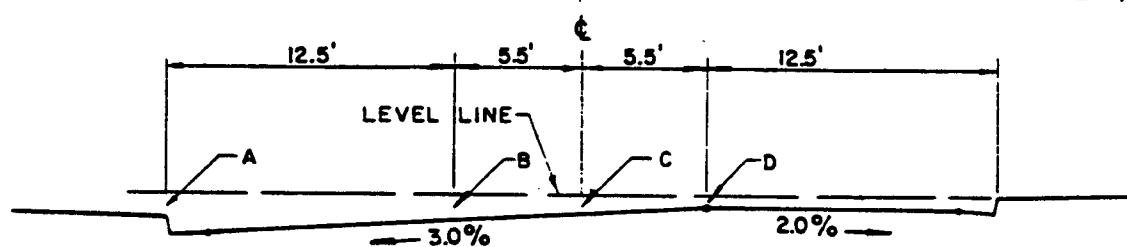
NOTES:


- STRUCTURAL SECTION OF ROADWAY SHALL BE DETERMINED FROM SOILS TESTS AND SO INDICATED ON CONSTRUCTION PLANS.
- DRAINAGE FACILITIES SHALL BE PROVIDED TO DEWATER RAISED MEDIAN AREAS.
- TEN FEET (10') SHOULDER AREAS MAY BE DESIGNATED AS A BIKE LANE AND EMERGENCY PARKING ONLY.
- IRRIGATION SYSTEM IN MEDIAN AREA SHALL BE DRIP OR BUBBLE SYSTEM.

SAN BERNARDINO COUNTY ROAD DEPARTMENT

KEN MILLER
DIRECTOR OF TRANSPORTATION

MAJOR ARTERIAL
CHINO HILLS SPECIFIC PLAN AREA


100B

TYPICAL SECTION

LEVEL

ALTERNATE SIDEWALK
(IF SHOWN ON PLAN)

TYPICAL SECTION

TIILT

		A	B	C	D
8" CURB	LEVEL	0.00'	0.33'	0.22'	0.33'
	TIILT	0.44'	0.66'	0.50'	0.33'
6" CURB	LEVEL	0.00	0.16'	0.05'	0.16'
	TIILT	0.44'	0.49'	0.33'	0.16'

$$D_{\max} = 0.92'$$

NOTE

- STRUCTURAL SECTION OF ROADWAY SHALL BE DETERMINED FROM SOILS TESTS AND SO INDICATED ON CONSTRUCTION PLANS.
- MINIMUM DESIGN PAVING THICKNESS SHALL BE 0.20' ASPHALT CONCRETE.
- CONSTRUCTION OUTSIDE R/W WILL REQUIRE SLOPE EASEMENTS
- WHEN PREPARING SUBGRADE FOR PAVING, CENTERLINE CROWN ON THE "LEVEL SECTION" SHALL BE RELOCATED EITHER LEFT OR RIGHT 0.50' TO MATCH CROWN BREAK IN PAVING MACHINE.

SAN BERNARDINO COUNTY ROAD DEPARTMENT

DATE: F.V.C. 9-65
Rev. 3-74

John R. Shone
COUNTY HIGHWAY ENGINEER

LOCAL STREET

104

Hall & Foreman, Inc.

43513 Ridge Park Drive Temecula, CA 92590
Ph. 909 676-6726 Fax 909 699-0896

To: FONTANA

JN. 04339

(1)

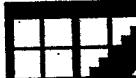
	<u>NODE</u>	<u>AREA</u>	<u>Aae</u>	<u>L</u>	<u>AH</u>	<u>SOIL</u>
	100-101	C A-1	5.0'	960'	103.0-1098.4=4.6'	A
	101-102	C A-2	5.0'	590'	1098.4-1093.6=4.8'	B
	102-50	24"	—	460'	1085.3-1079.5	
	103-104	C A-3	5.5'	1000'	103.0-1098.4=4.6'	A
#2	104-105	C A-4	9.5'	700'	1098.4-1092.2=6.2'	A
2	105-50	30"	—	570'	1083.8-1079.5	
DZ:	50-51	39"	—	1320'	1079.5-1071.3	
	106-107	1 A-5	5.5'	1000'	1093.6-1085.4=8.2'	B
C	107-108	1 A-6	6.0'	700'	1085.4-1078.3=7.1	B
	51-55	42"	—	900'	1071.3-1062.4	
	109-110	1 A-7	4.5'	1000'	1080.0-1073.7=6.3'	B
	110-111	1 A-8	4.0'	350'	1073.7-1069.4=4.3'	B
	112-113	SCA-9	5.5'	800'	1085.3-1080.3=5.0'	B
	113-116	1 A-10	11.0'	730'	1080.3-1076.6=3.7'	B
#1	114-115	1 A-11	5.5'	1000'	1093.6-1084.4=9.2'	B
1	115-116	1 A-12	7.0'	600'	1084.4-1076.6=7.8'	B
DZ:	116-52	39"	—	650'	1069.6-1061.9	
	117-118	1 A-13	5.0'	1000'	1076.0-1071.0=5.0'	B
C	118-119	1 A-14	10.0'	420'	1071.0-1068.9=2.1'	B
	52-53	42"	—	500'	1061.9-1059.4	

Hall & Foreman, Inc.

43513 Ridge Park Drive Temecula, CA 92590
Ph. 909 676-6726 Fax 909 699-0896

To: FONTANA

JN 04339


#	120-121	1A-15	5.5'	1000'	1072.0 - 1067.0 = 5.0'	B
DZ-2A	121-122	1A-16	9.0'	450'	1067.0 - 1064.7 = 2.3'	B
	53-54	60"	—	860'	1052.5 - 1048.2	
	123-124	1A-17	7.0'	1000'	1064.7 - 1059.7 = 5.0'	
	54-55	63"	—	340'	1048.2 - 1046.5 = 1.7'	
	125-126	1A-18	5.5'	1000'	1093.2 - 1085.3 = 7.9'	B
	126-127	1A-19	12.0'	900'	1085.3 - 1076.3 = 9.0'	B
	127-55	30"	—	1000'	1069.3 - 1046.5	
DZ-2A	128-129	1A-20	9.0'	1000'	1078.3 - 1069.4 = 8.9'	B
	55-56	78"	—	1000'	1046.5 - 1043.3	
#	130-131	1A-21	5.5'	1000'	1092.2 - 1084.1 = 8.1'	B
DZ-2	131-132	1A-22	12.0'	900'	1084.1 - 1075.0 = 9.1'	B
	132-56	30"	—	1,100'	1068.0 - 1043.3	
	133-134	1A-23	5.5'	1,000'	1076.3 - 1070.9 = 5.4'	B
	134-135	1A-24	12.0'	800'	1070.9 - 1064.1 = 6.8'	B
	56-57	84"	—	640'	1043.3 - 1041.3	
	136-137	1A-25	5.5'	1,000'	1091.6 - 1086.6 = 5.0'	B
	137-138	1A-26	11.0'	875'	1086.6 - 1074.6 = 12.0'	B
	138-57	30"	—	1320'	1067.6 - 1041.3	

Subject FONTANA
JN 04339DZ-2
#2
↓SIEVER AVE. #7
↑

139-140	1 A-27	5.5'	1000'	1074.7 - 1069.7 = 5.0'	B
140-141	1 A-28	11.0'	875'	1069.7 - 1065.3 = 4.4'	B
57-63	87"	—	560'	1041.3 - 1039.5	
200-201	CB-1	5.5'	1,000'	1103.0 - 1098.0 = 5.0'	A
201-202	CB-2	9.5'	670'	1098.0 - 1091.6 = 6.4'	A
202-60	42"	—	555'	1084.6 - 1078.4	
203-204	CB-3	6.5'	1,000'	1103.0 - 1096.0 = 7.0'	A
204-205	CB-4	8.5'	675'	1096.0 - 1090.5 = 5.5'	A
60-61	42"	—	500'	1078.4 - 1076.7	
206-207	CB-5	6.0'	1,000'	1103.0 - 1097.0 = 6.0'	A
207-208	CB-6	10.0'	775'	1097.0 - 1089.3 = 7.7'	A
61-62	48"	—	1320'	1076.7 - 1065.0	
209-210	1 B-7	5.5'	1,000'	1090.5 - 1084.5 = 6.0'	A
210-211	1 B-8	11.0'	875'	1084.5 - 1076.5 = 8.0'	B
212-213	CB-9	5.0'	1,000'	1092.6 - 1086.0 = 6.6'	A
213-214	CB-10	10.0'	1,000'	1086.0 - 1076.5 = 9.5'	A
62-63	54"	—	1320'	1065.0 - 1042.2	
215-216	1 B-11	5.5'	1,000'	1074.6 - 1071.0 = 3.6'	B
216-217	1 B-12	11.0'	875'	1071.0 - 1063.7 = 7.3'	B
63-64	90"	—	1320	1039.1 - 1033.8	
218-219	SB-13	5.0'	1,000'	1065.5 - 1059.0 = 6.5'	B
219-220	SB-14	8.0'	500'	1059.0 - 1056.5 = 2.5'	B
220-221	SB-15	13.0'	660'	1056.5 - 1051.2 = 5.3'	B
64-71	90"	—	660'	1033.8 - 1030.0	
71-89	108"	—	680'	1030.0 - 1025.0	

Subject FONTANA
VN 04339

300-301	C-1	5.0'	1,000'	1068.1 - 1063.1 = 5.0'	B
301-302	C-2	14.5'	620'	1063.1 - 1060.0 = 3.1'	B
302-65	36"	—	660'	1055.0 - 1051.7	
303-304	C-3	8.0'	1,000'	1064.5 - 1060.0 = 5.0'	B
65-66	57"	—	660'	1051.7 - 1048.4	
305-306	SC-4	8.0'	1,000'	1062.0 - 1055.4 = 6.6'	B
307-308	SC-5	5.0'	1,000'	1070.1 - 1065.1 = 5.0'	B
308-309	SC-6	10.0'	650'	1065.1 - 1067.7 = 2.4'	B
309-310	SC-7	15.0'	1,450'	1067.7 - 1055.4 = 7.3'	B
66-67	75"	—	760'	1048.4 - 1044.6	
311-312	SC-8	8.0'	1,000'	1062.4 - 1057.4 = 5.0'	B
312-313	SC-9	8.0'	960'	1057.4 - 1052.6 = 4.8'	B
67-68	84"	—	760'	1044.6 - 1040.8	
324-325	SC-17	8.0'	1,000'	1055.0 - 1050.0 = 5.0'	B
326-327	SC-18	7.0'	1,000'	1055.0 - 1050.0 = 5.0'	B
69-70	102"	—	880'	1038.8 - 1034.6	
328-329	SC-19	5.0'	1,000'	1057.8 - 1052.8 = 5.0'	B
329-330	SC-20	12.0'	800'	1052.8 - 1048.8 = 4.0'	B
330-331	SC-21	17.0'	660'	1048.8 - 1045.5 = 3.3'	B
331-70	42"	—	800'	1038.6 - 1034.6	
332-333	SC-22	5.0'	1,000'	1053.2 - 1048.2 = 5.0'	B
333-334	SC-23	8.0'	520'	1048.2 - 1045.6 = 2.6'	B
335-336	SC-24	6.0'	1,000'	1053.2 - 1048.2 = 5.0'	B
336-337	SC-25	13.0'	520'	1048.2 - 1045.6 = 2.6	B
70-71	102"	—	800'	1034.6 - 1030.6	

Hall & Foreman, Inc.

43513 Ridge Park Drive Temecula, CA 92590
Ph. 909 676-6726 Fax 909 699-0896

Subject FONTANA

JN 04339

338-339	CC-26	5.0'	1,000'	1056.0 - 1051.0 = 5.0'	B
339-340	CC-27	9.0'	480'	1051.0 - 1048.6 = 2.4'	B

314-315	SC-10	5.0'	1,000'	1079.5 - 1074.5 = 5.0'	B
315-318	SC-11	8.5'	1,000'	1074.5 - 1069.5 = 5.0'	B
316-317	SC-12	5.0'	1,000'	1079.5 - 1074.5 = 5.0'	B
317-318	SC-13	9.0'	1,000'	1074.5 - 1069.5 = 5.0'	B
318-319	SC-14	18.5'	1,300'	1069.5 - 1063.0 = 6.5'	B
319-68		48"	—	1054.8 - 1041.8	

320-321	SC-15	6.5'	1,000'	1057.1 - 1052.1 = 5.0'	B
322-323	SC-16	5.0'	1,000'	1057.1 - 1052.1 = 5.0'	B
68-69		93"	—	1040.8 - 1038.8	

400-401	ND-1	6.0'	1,000'	1850.0 - 1,300 = 550'	B
401-402	ND-2	9.5'	850'	1300.0 - 1087 = 213'	B
402-75		36"	—	1080.0 - 1077.0	

403-404	ND-3	5.5'	1,000'	1,600.0 - 1140.0 = 460'	B
404-405	ND-4	9.0'	470'	1,140.0 - 1085.0 = 55'	B
405-75		36"	—	1,078.0 - 1,077.0 = 1'	

406-408	SD-5	7.5"	1,000'	1065.0 - 1055.0 = 10'	B
407-408	SD-6	6.0'	1,000'	1065.0 - 1055.0 = 10'	B
75-76		42"	—	1075.0 - 1047.0	
76-80		54"	—	1047.0 - 1041.3	
80-88		90"	—	1037.2 - 1031.6	
88-89		96"	—	1031.1 - 1028.8	

FOR BENT. SEE SL. 8

Subject FONTANA
JN04339

(6)

409-410	ND-7	7.5'	1000'	1860.0 - 1460.0 = 400'	B
410-411	ND-8	18.5'	470'	1460.0 - 1300.0 = 160'	B
411-412	ND-9	20.0'	620'	1300.0 - 1180.0 = 120'	B
412-77	30"	—	340'	1152.0 - 1122.5	

P3 #4

413-414	SD-10	4.5'	500'	1163.3 - 1129.0 = 64.3'	B
77-78	39"	—	550'	1122.5 - 1090.5	
415-416	SD-11	7.0'	550'	1129.0 - 1097.0 = 32'	B
417-418	ND-12	10.0'	650'	1420.0 - 1120.0 = 300'	B
78-79	48"	—	900'	1090.5 - 1060.2	

C

P3 #4

400-420	ND-14	9.5'	1000'	1850.0 - 1320.0 = 530'	B
420-421	ND-15	9.5'	630'	1320.0 - 1140.0 = 180'	B
421-422	ND-16	13.0'	820'	1140.0 - 1064.0 = 76'	B
79-80	54"	—	440'	1052.0 - 1040.2	

P3

423-424	SD-17	9.0'	1000'	1102.5 - 1060.5 = 42'	B
ST. 424-425	SD-18	15.0'	800'	1060.5 - 1049.0 = 11.5'	B

P2 #5

500-501	NE-1	6.0'	1000'	1620.0 - 1350.0 = 270'	B
501-502	NE-2	9.0'	500'	1350.0 - 1180.0 = 170'	B
502-83	24"	—	660'	1167.6 - 1126.0	

C

503-504	NE-3	10.0'	1000'	1520.0 - 1180.0 = 340'	B
504-505	SE-4	2.0'	660'	1167.6 - 1126.0 = 41.6'	B
83-85	36"	—	450'	1126.0 - 1092.3	

Hall & Foreman, Inc.

43513 Ridge Park Drive Temecula, CA 92590
Ph. 909 676-6726 Fax 909 699-0896

(7)

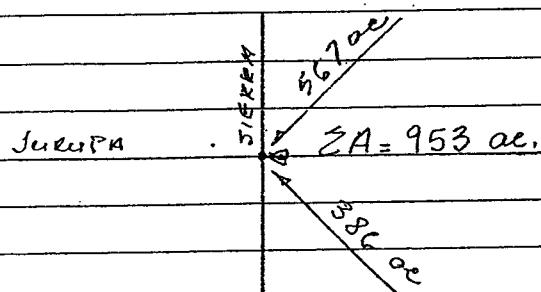
Subject FONTAERA
JN 04339

518-519	S E-13	8.5'	1000'	1148.0 - 1101.0 = 47' B
519-520	S E-14	8.5'	900'	1101.0 - 1066.5 = 34.5' B
521-522	S E-15	5.5'	1000'	1111.0 1101.0 = 10' B
522-523	S E-16	17.0'	900'	1101.0 - 1066.5 = 34.5' B
86-87	48"	—	445'	1059.3 - 1053.2
				1031.1 - 1028.9
524-525	N E-17	9.0'	750'	1072.3 - 1065.0 = 7.3' B
87-88	54"	—	370'	1050.9 - 1033.6

506-507	N E-5	8.0'	1000'	2040.0 - 1680.0 = 360' B
507-508	N E-6	12.0'	580'	1680.0 - 1450.0 = 230' B
508-509	N E-7	27.5'	1000'	1450.0 - 1140.0 = 310' B
510-511	N E-8	9.5'	1000'	1560.0 - 1180.0 = 380' B
511-512	N E-9	24.5'	530'	1180.0 - 1140.0 = 40' B
512-84	30"	—	450'	1137.5 - 1110.7

513-514	N E-10	7.0'	1000'	1770.0 - 1460.0 = 310' B
514-515	N E-11	7.0'	1100'	1460.0 - 1140.0 = 320' B
515-84	18"	—	280'	1119.1 - 1111.4
84-85	30"	—	600'	1110.7 - 1092.3

516-517	S E-12	7.0'	1000'	1148.0 - 1101.0 = 47' B
85-86	39"	—	950'	1092.3 - 1059.3


526-527	S E-18	6.5'	1000'	1065.0 - 1060.0 = 5' B
528-529	S E-19	6.5'	1000'	1065.0 - 1060.0 = 5' B

8

Subject PONTANA
JN 04339

BEFORE THIS SEE SH.5

513-530	N E-20	6.0'	1000'	1770.0 - 1380.0 = 390'	B
530-531	N E-21	7.0'	800'	1380.0 - 1120.0 = 260'	B
ST 531-532	N E-22	16.0'	1800'	1120.0 - 1056.0 = 64'	B
533-534	S E-23	6.5'	1000'	1064.1 - 1059.1 = 5.0	B
534-535	E-24	5.5'	330'	1059.3 - 1056.2 = 3.1	B

700-701	MG-1	5.0°	1000'	104.0 - 1096.7 = 7.3'	A
701-702	MG-2	5.0°	330'	1096.7 - 1095.0 = 1.7'	A
702-703	MG-3	10.0°	660'	1095.0 - 1092.0 = 3.0'	A
703-704	MG-4	20.0°	660'	1092.0 - 1082.0 = 10'	A
704-30	39°	—	1000'	1076.0 - 1066.0	

#13	105-706	H G-5	10'	1000'	1085.7 - 1075.3 = 10.4'	A
	706-707	G-6	7.5'	330'	1075.3 - 1072.0 = 3.3'	B
	30-31	39"	—	990'	1066.0 - 1062.2	

708-709	G-7	7.5'	1000'	1072.0 - 1069.2 = 2.8'	B
709-710	G-8	20. '	660'	1069.2 - 1062.6 = 5.6'	B
31-32	39"	—	660'	1056.6 - 1052.0	B

711 - 712	G - 9	5"	1000'	1069.6 - 1062.1 = 7.5'	B
712 - 713	G - 10	15'	990'	1062.1 - 1058.0 = 4.1'	B
D2-6	32 - 35	51"	—	1320'	1052.0 - 1041.0.
→	35 - 38	84"	—	1320'	1041.0 - 1035.0

Subject FONTANA
SN 04339

DZ-6 #11	714-715	i G-11	7.0"	1000'	1104.0 - 1077.0 = 12'	A
	715-716	i G-12	11.0"	800'	1092.0 - 1089.0 = 3'	A
	716-717	i G-13	20"	660'	1089.0 - 1081.5 = 7.5'	A
	717-33	39"	—	990'	1075.0 - 1061.0	
DZ-6 #11	718-719	i G-14	5"	1000'	1082.0 - 1075.0 = 7.0	A
	719-720	i G-15	5"	330'	1075.0 - 1073.3 = 1.7'	A
	720-721	i G-16	10"	660'	1073.3 - 1070.0 = 3.3'	A
	721-722	MG-17	10"	330'	1070.0 - 1068.0 = 2.0'	A
	33-34	39"	—	990	1061.0 - 1048.2	
	723-724	MG-18	5"	1000'	1072.0 - 1066.6 = 5.4'	A
	724-725	MG-19	5"	660'	1066.6 - 1063.0 = 2.8'	A
	ST 725-729	i G-20	0	660'	1063.0 - 1056.6 = 6.4'	
	726-727	MG-21	5"	1000'	1069.2 - 1062.0 = 7.2'	A
	727-728	MG-22	5"	330'	1062.0 - 1060.0 = 2.0'	A
DZ-6 #11	728-729	MG-23	10"	660'	1060.0 - 1056.6 = 3.4'	A
	34-35	39"	—	660'	1048.2 - 1042.0	
	730-731	MG-24	5"	1000	1063.7 - 1055.8 = 7.9'	B
	731-732	MG-25	5"	330	1055.8 - 1053.6 = 2.2'	B
DZ-7 #12	732-733	MG-26	10"	660'	1053.6 - 1049.0 = 4.6'	A
	800-801	H-1	6.0"	1000'	1098.0 - 1088.0 = 10'	A
	801-802	H-2	10.0"	820'	1088.0 - 1081.0 = 7'	A
	802-803	H-3	20.0"	620'	1081.0 - 1075.0 = 6'	A
	803-36	42"	—	990'	1069.0 - 1054	
	804-805	H-4	5.0"	1000'	1081.5 - 1071.0 = 10.5'	A
	805-806	H-5	10.0"	330'	1071.0 - 1069.0 = 2'	A
	806-807	H-6	5.0"	660'	1069.0 - 1065.0 = 4'	A
	807-808	H-7	10.0"	330'	1065.0 - 1060.0 = 5'	A

Hall & Foreman, Inc.

43513 Ridge Park Drive Temecula, CA 92590
Ph. 909 676-6726 Fax 909 699-0896

Subject FONTANA
JN04339

36-37	42°	—	990'	1054.0 - 1043.5
809-810	S H-8	5.0'	1000'	1068.0 - 1061.0 = 7' A
810-811	S H-9	5.0'	660'	1061.0 - 1057.0 = 4' A
811-812	S H-10	20.0'	660'	1057.0 - 1051.0 = 6.0' A
37-38	42°	—	660'	1043.5 - 1038.0
813-814	M H-11	5.0'	1000'	1056.6 - 1048.5 = 8.1' A
814-815	M H-12	5.0'	330'	1048.5 - 1047.3 = 1.2' A
815-816	M H-13	10.0'	660'	1047.3 - 1045.0 = 2.3' A
38-39	84°	—	990'	1035.0 - 1026.6
817-818	S H-14	5'	1000'	1049.0 - 1044.0 = 5' A
818-819	S H-15	5'	330'	1044.0 - 1042.3 = 1.7' A
819-820	S H-16	10'	660'	1042.3 - 1039.0 = 3.3' A
820-821	S H-17	10'	330'	1039.0 - 1037.0 = 2.0' A
39-40	84°	—	1,720'	1026.6 - 1012.8
822-823	S H-18	5°	1000'	1037.7 - 1034.3 = 3.4' A
823-824	S H-19	5°	660'	1034.3 - 1032.0 = 3.3' A
824-825	M H-20	10°	660'	1032.0 - 1027.0 = 5.0' A
825-826	M H-21	6°	750'	1027.0 - 1023.0 = 4.0' A
40-94	102°	—	900'	1011.3 - 1004.0
827-828	S H-22	6'	900'	1023.0 - 1014.0 = 9' A

Hall & Foreman, Inc.

43513 Ridge Park Drive Temecula, CA 92590
Ph. 909 676-6726 Fax 909 699-0896

Subject FONTANA
JN 04339

11

600-601	C F-1	5'	1000'	1065.0 - 1060.0 = 5'	B
601-602	C F-2	5"	330'	1060.0 - 1058.3 = 1.7'	B
602-603	C F-3	10'	660'	1058.3 - 1055.0 = 3.3'	B
603-607	C F-4	0	660'	1055.0 - 1052.0 = 3'	B
604-605	C F-5	5"	1000'	1062.9 - 1057.9 = 5'	B
605-606	C F-6	5"	330'	1057.9 - 1055.9 = 2'	B
606-607	M F-7	10'	660'	1055.9 - 1052.0 = 3.9'	B
607-45		36"	—	1047.0 - 1041.0	
608-609	C F-8	5"	1000'	1060.8 - 1055.8 = 5'	B
609-610	C F-9	5"	330'	1055.8 - 1053.5 = 2.3'	B
610-611	M F-10	10'	660'	1053.5 - 1049.0 = 4.5'	B
45-90		42"	—	1040.0 - 1025.0	
612-613	C F-11	5"	1000'	1058.7 - 1053.7 = 5'	B
613-614	C F-12	5"	330'	1053.7 - 1051.1 = 2.6'	B
614-615	M F-13	10'	660'	1051.1 - 1046.0 = 5.1'	B
89-90	14' 9"	—	1320'	1028.2 - 1022.3	
616-617	N F-14	7'	1000'	1040.0 - 1160.0 = 380'	B
617-618	N F-15	18'	900'	1160.0 - 1080.0 = 80'	B
618-90		48"	—	1033.0 - 1025.0	
619-620	C F-16	6'	1000'	1056.4 - 1051.4 = 5'	B
620-621	C F-17	6'	1070'	1051.4 - 1046.0 = 5.4	B
90-91	14' 9" RCB	—	1320'	1022.3 - 1013.1	

Hall & Foreman, Inc.

43513 Ridge Park Drive Temecula, CA 92590
Ph. 909 676-6726 Fax 909 699-0896

Subject FONTANA
JN 04339

625-626	F-20	5'	1000'	1058.0 - 1051.3 = 6.7	B
626-627	F-21	5'	330'	1051.3 - 1049.0 = 2.3'	B
627-628	F-22	10'	660'	1049.0 - 1044.6 = 4.4'	B
628-629	F-23	20'	660'	1044.6 - 1040.3 = 4.3'	B
629-46		36°	—	1033.3 - 1026.0	

#9

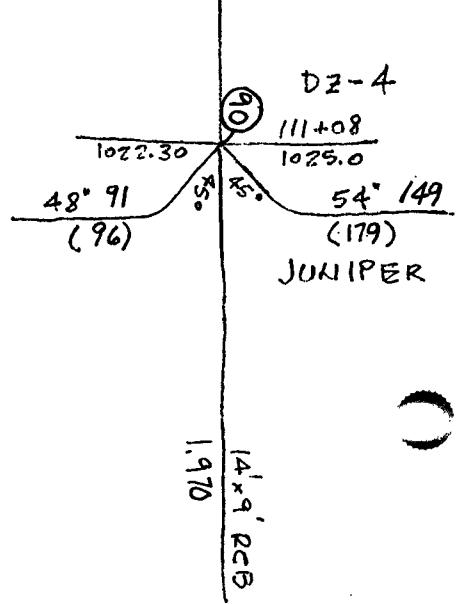
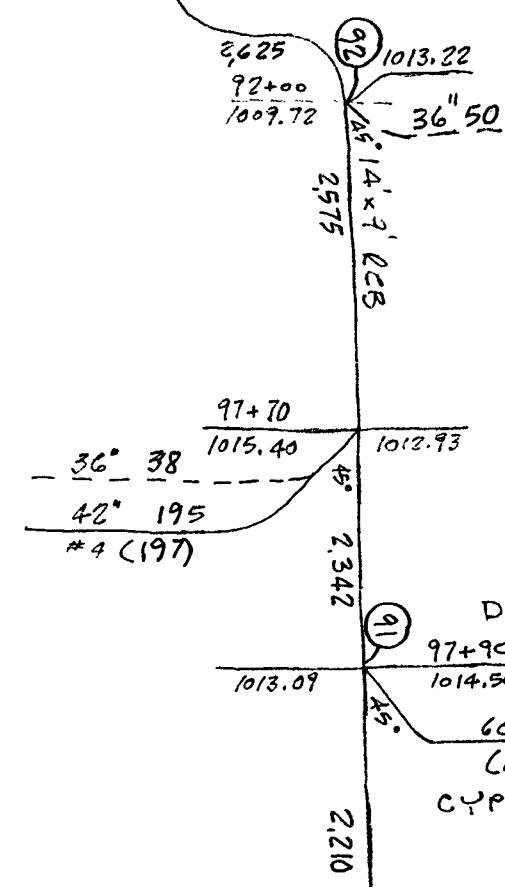
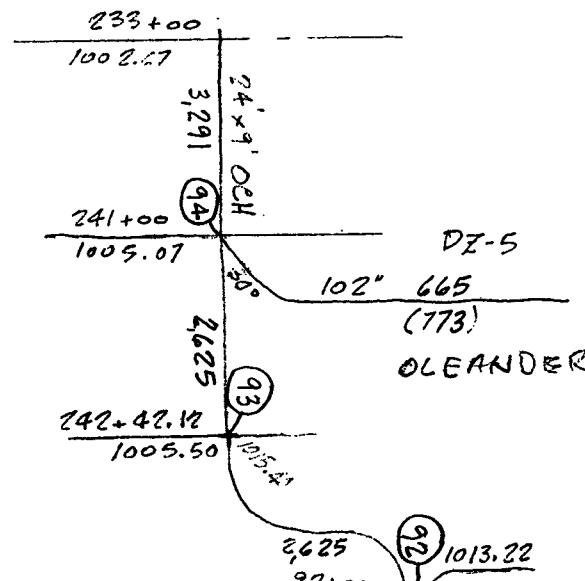
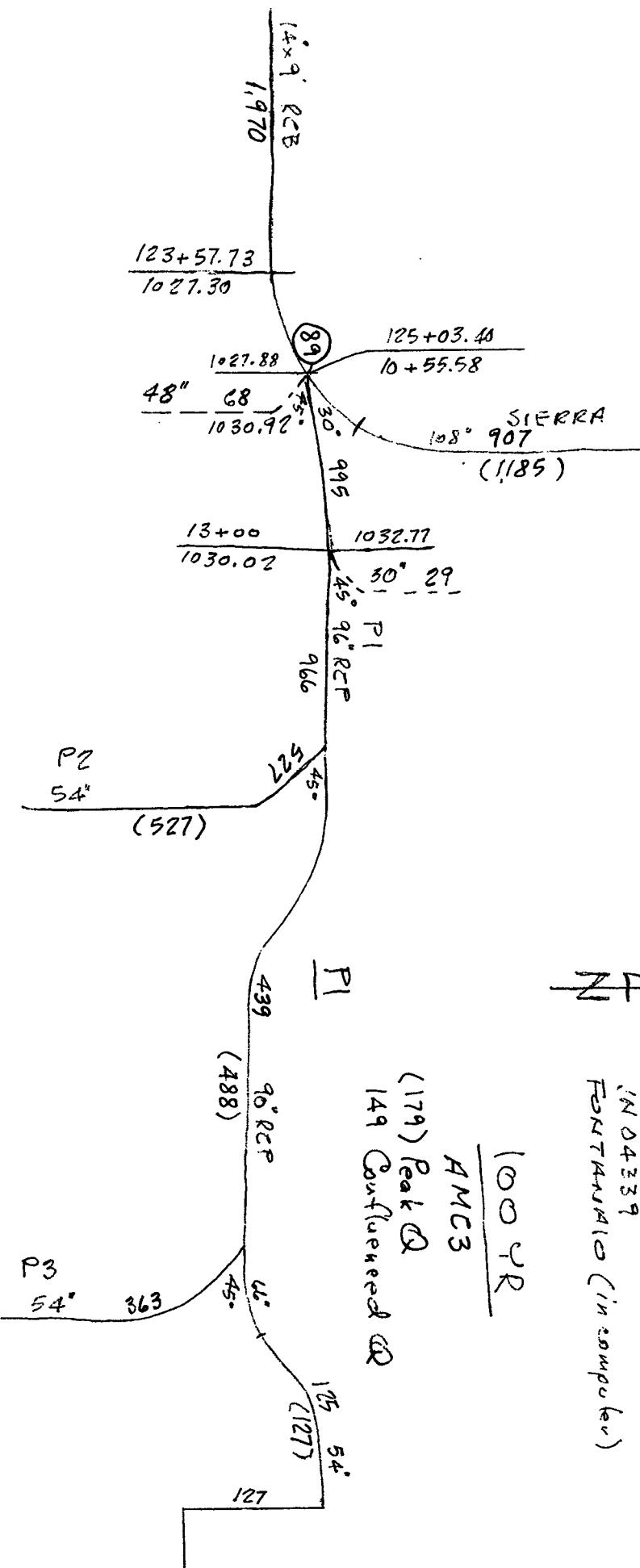
DZ-4A

630-631	S F-24	5'	1000'	1052.2 - 1044.0 = 8.2'	B
631-632	S F-25	5'	330'	1044.0 - 1041.3 = 2.7'	B
632-633	S F-26	10'	660'	1041.3 - 1035.9 = 5.4'	B
46-91		60°	—	1026.0 - 1014.5	

1

634-635	S F-27	6'	1000'	1046.8 - 1041.8 = 5'	B
635-636	S F-28	6'	330'	1041.8 - 1037.8 = 4'	B
636-637	S F-29	11'	660'	1037.8 - 1031.0 = 6.8'	A

DZ-4A





638-639	N F-30	10'	1000'	1900 - 1540 = 360'	B
639-640	N F-31	20'	600'	1540 - 1200 = 340'	B
640-641	N F-32	42'	1500'	1200 - 1045 = 155'	B
641-91		42"	—	1035.0 - 1015.4 =	

10
#10 RC B #10 x 9'

650-651	S F-40	5'	1000	1040.3 - 1033.6 = 6.7'	A
651-652	S F-41	5'	330'	1033.6 - 1031.4 = 2.2'	A
652-653	S F-42	11'	750'	1031.4 - 1026.0 = 5.4'	A
653-654	S F-43	11'	660'	1026.0 - 1023.0 = 3.0'	A
92-93	14' x 9' RCB	—	450'	1006.4 - 1005.5	
93-94	24' x 9' L	—	500'	1005.5 - 1004.0	

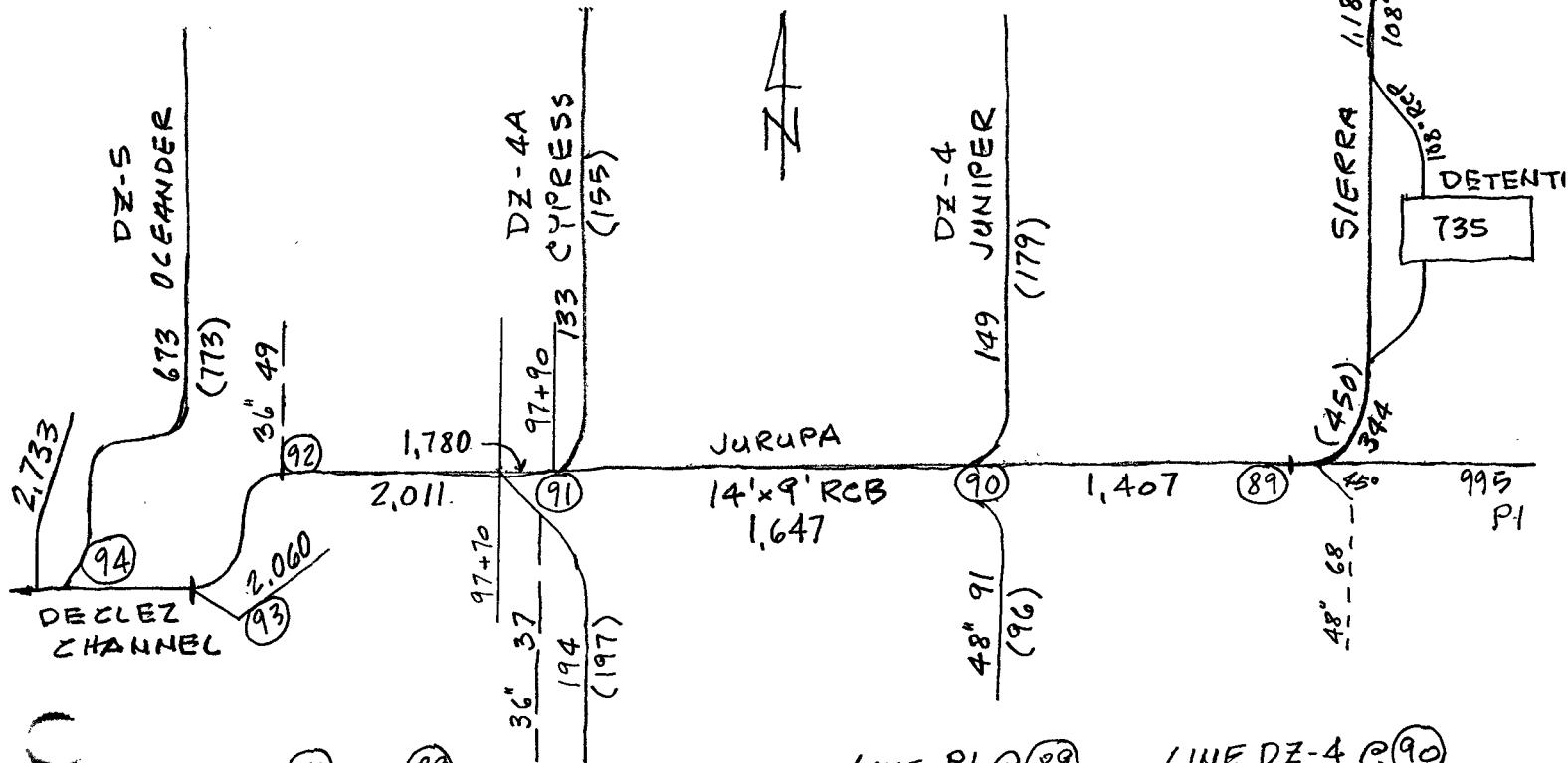
642-643	S F-33	6'	1000'	1042.0 - 1037.0 = 5'	B
643-644	S F-34	8'	1200'	1037.0 - 1031.0 = 6'	A
645-646	S F-35	6'	1000	1042.0 - 1037.0 = 5'	A
646-647	S F-36	7'	1200'	1037.0 - 1031.0 = 6'	A
91-92	14' x 9 RCB	—	1340'	1013.1 - 1006.4	

Q₁₀₀ SUMMARIES

JURUPA AVE KNOB DETECTION
IN 04339
FORTALEDO (in computer)

(179) Peak Q
149 Confluence Q

1091


FONTANA

JN04339

150

JURUPA AVE. 14' x 9' RCB W/DET. @ SIERRA
FONTANA 10WDET (Computer name)

AMC3

(71) TO (89)

$Q_{100} = 450 \text{ cfs}$ (After detention)

LINE P1 @ (89)

$Q_{100} = 1,063 \text{ cfs}$

LINE DZ-4 @ (90)

$Q_{100} = 179 \text{ cfs}$

$A = 76.70 \text{ ac}$

$L_c = 20.98$

$A_p = 0.194$

$F_m = 0.086$

SCS #56

$Q = 74 \text{ cfs}$

$A_{100} = 25 \text{ ac.}$

$L_c = 13.30$

$A_p = 1.000$

$F_m = 0.140$

(179) Peak Q

150 Confluenced Q

$Q_{100} = 22 \text{ cfs}$

$A = 6 \text{ ac.}$

$L_c = 25.03$

$A_p = 0.500$

$F_m = 0.220$

DZ-4A @ ⑨1

$$Q_{100} = 155 \text{ cfs}$$

$$A = 75.26 \text{ ac}$$

$$f_c = 22.06$$

$$K_p = 0.500$$

$$F_m = 0.245$$

$$SCS \# 52.8$$

@ ⑨2

$$Q_{100} = 58 \text{ cfs}$$

$$A = 32 \text{ ac}$$

$$f_c = 26.08$$

$$K_p = 0.500$$

$$F_m = 0.220$$

@ ⑨3

$$Q_{100} = 2,060 \text{ cfs}$$

$$Q_{100} = 197 \text{ cfs}$$

$$A = 72 \text{ ac}$$

$$f_c = 14.74$$

$$K_p = 1.000$$

$$F_m = 0.140$$

@ ⑨4 DZ-5

$$Q_{100} = 773 \text{ cfs}$$

$$Q_{100} = 24 \text{ cfs}$$

$$A = 14 \text{ ac}$$

$$f_c = 25.60$$

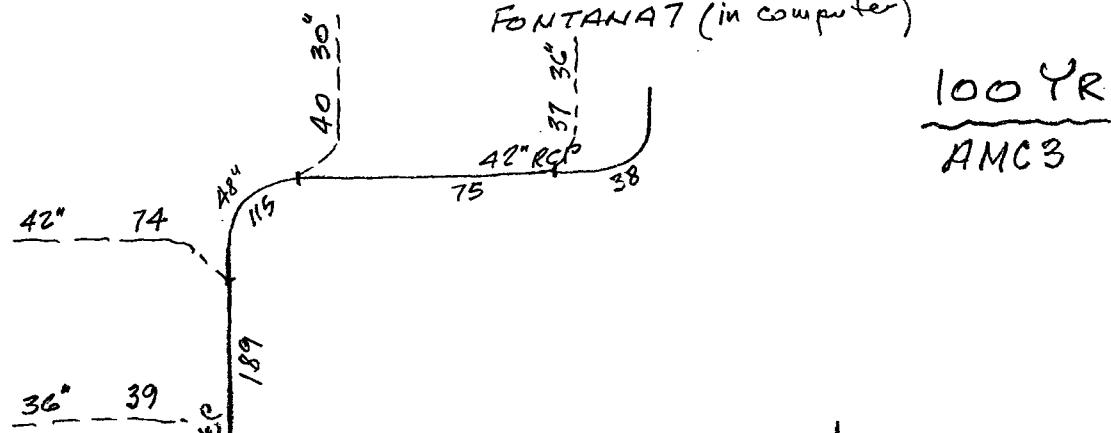
$$K_p = 0.500$$

$$F_m = 0.319$$

$$Q_{100} = 22 \text{ cfs}$$

$$A = 13 \text{ ac.}$$

$$f_c = 25.99$$

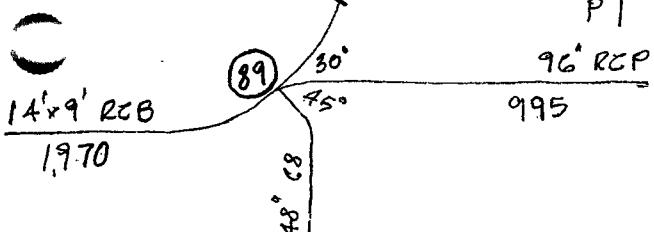
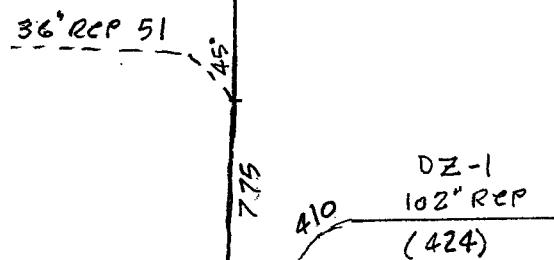

$$K_p = 0.500$$

$$F_m = 0.393$$

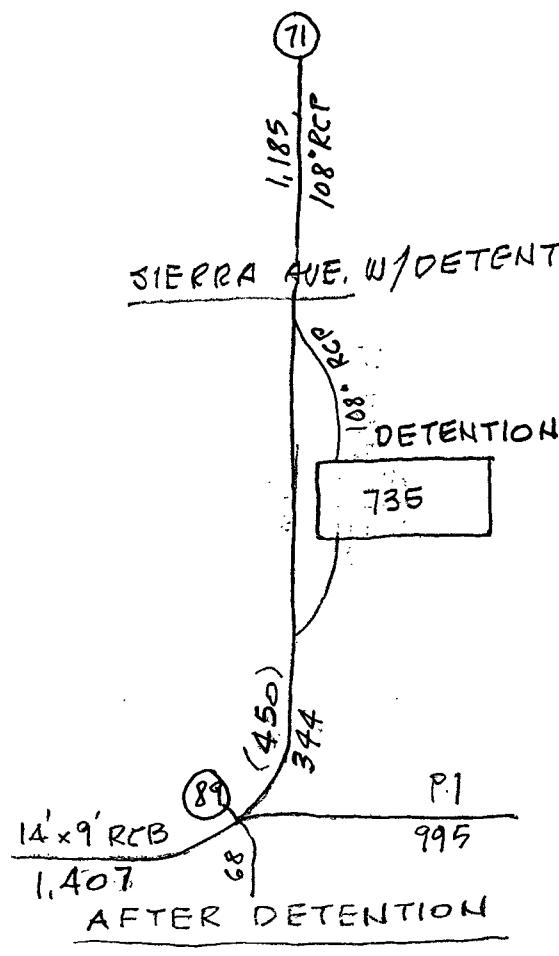
SIERRA AVE W/O DETENTION
FONTANAT (in computer)

JN.04339

1504

SANTA ANA
DZ-2
72" RCP


(509)

DZ-2A
63" RCP
(159)

(228) Peak Q
209 Confluenced Q

SIERRA AVE. W/DETENTION

◆ LAND PLANNING ◆ CIVIL ENGINEERING ◆ SURVEYING

FONTANA

JOB No. 04339
BY HERMAN
DATE 7/14/04
SHT. 99
OF

**100 YEAR
w/AMC 3**

LINE "DZ-2A"

San Bernardino County Rational Hydrology Program

(Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
Rational Hydrology Study Date: 01/05/05-----
FONTANA / LINE DZ-2A HYDROLOGY
100 YEAR STORM
JN 04339-----
Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
10 Year storm 1 hour rainfall = 0.930 (In.)
100 Year storm 1 hour rainfall = 1.350 (In.)
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.350 (In.)
Slope used for rainfall intensity curve b = 0.6000
Soil antecedent moisture condition (AMC) = 3+++++
Process from Point/Station 112.000 to Point/Station 113.000
**** INITIAL AREA EVALUATION ****-----
SCHOOL subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio (Ap) = 0.6000 Max loss rate (Fm) = 0.264 (In/Hr)
Initial subarea data:
Initial area flow distance = 800.000 (Ft.)
Top (of initial area) elevation = 1085.300 (Ft.)
Bottom (of initial area) elevation = 1080.300 (Ft.)
Difference in elevation = 5.000 (Ft.)
Slope = 0.00625 s(%) = 0.63
TC = $k(0.412) * [(length^3) / (elevation change)]^{0.2}$
Initial area time of concentration = 16.480 min.
Rainfall intensity = 2.931 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.819
Subarea runoff = 13.203 (CFS)
Total initial stream area = 5.500 (Ac.)
Pervious area fraction = 0.600
Initial area Fm value = 0.264 (In/Hr)+++++
Process from Point/Station 113.000 to Point/Station 116.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****-----
Top of street segment elevation = 1080.300 (Ft.)
End of street segment elevation = 1076.600 (Ft.)

Length of street segment = 730.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 26.406(CFS)
 Depth of flow = 0.535(Ft.), Average velocity = 2.705(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.71(Ft/s)
 Travel time = 4.50 min. TC = 20.98 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044(In/Hr)
 Rainfall intensity = 2.536(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.858$
 Subarea runoff = 22.717(CFS) for 11.000(Ac.)
 Total runoff = 35.920(CFS)
 Effective area this stream = 16.50(Ac.)
 Total Study Area (Main Stream No. 1) = 16.50(Ac.)
 Area averaged F_m value = 0.117(In/Hr)
 Street flow at end of street = 35.920(CFS)
 Half street flow at end of street = 17.960(CFS)
 Depth of flow = 0.585(Ft.), Average velocity = 3.057(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 116.000 to Point/Station 116.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 16.500(Ac.)
 Runoff from this stream = 35.920(CFS)
 Time of concentration = 20.98 min.
 Rainfall intensity = 2.536(In/Hr)
 Area averaged loss rate (F_m) = 0.1173(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.2667

+++++
 Process from Point/Station 114.000 to Point/Station 115.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1093.600 (Ft.)
 Bottom (of initial area) elevation = 1084.400 (Ft.)
 Difference in elevation = 9.200 (Ft.)
 Slope = 0.00920 s(%) = 0.92
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 12.306 min.
 Rainfall intensity = 3.493 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area ($Q=KCIA$) is $C = 0.889$
 Subarea runoff = 17.071 (CFS)
 Total initial stream area = 5.500 (Ac.)
 Pervious area fraction = 0.100
 Initial area F_m value = 0.044 (In/Hr)

+++++
 Process from Point/Station 115.000 to Point/Station 116.000
 *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 1084.400 (Ft.)
 End of street segment elevation = 1076.600 (Ft.)
 Length of street segment = 600.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 27.934 (CFS)
 Depth of flow = 0.478 (Ft.), Average velocity = 3.738 (Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 19.146 (Ft.)
 Flow velocity = 3.74 (Ft/s)
 Travel time = 2.68 min. TC = 14.98 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044 (In/Hr)
 Rainfall intensity = 3.104 (In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.887$
 Subarea runoff = 17.352(CFS) for 7.000(Ac.)
 Total runoff = 34.423(CFS)
 Effective area this stream = 12.50(Ac.)
 Total Study Area (Main Stream No. 1) = 29.00(Ac.)
 Area averaged Fm value = 0.044(In/Hr)
 Street flow at end of street = 34.423(CFS)
 Half street flow at end of street = 17.211(CFS)
 Depth of flow = 0.507(Ft.), Average velocity = 3.992(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown)= 20.000(Ft.)

++++++
 Process from Point/Station 116.000 to Point/Station 116.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 12.500(Ac.)
 Runoff from this stream = 34.423(CFS)
 Time of concentration = 14.98 min.
 Rainfall intensity = 3.104(In/Hr)
 Area averaged loss rate (Fm) = 0.0440(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	35.920	20.98	2.536
2	34.423	14.98	3.104
$Q_{max}(1) =$			
	1.000 *	1.000 *	35.920) +
	0.814 *	1.000 *	34.423) + = 63.956
$Q_{max}(2) =$			
	1.235 *	0.714 *	35.920) +
	1.000 *	1.000 *	34.423) + = 66.096

Total of 2 streams to confluence:
 Flow rates before confluence point:
 35.920 34.423
 Maximum flow rates at confluence using above data:
 63.956 66.096
 Area of streams before confluence:
 16.500 12.500
 Effective area values after confluence:
 29.000 24.284
 Results of confluence:
 Total flow rate = 66.096(CFS)
 Time of concentration = 14.982 min.
 Effective stream area after confluence = 24.284(Ac.)
 Stream Area average Pervious fraction(Ap) = 0.195
 Stream Area average soil loss rate(Fm) = 0.086(In/Hr)
 Study area (this main stream) = 29.00(Ac.)

++++++
 Process from Point/Station 116.000 to Point/Station 52.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1069.600(Ft.)
 Downstream point/station elevation = 1061.900(Ft.)
 Pipe length = 650.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 66.096(CFS)
 Given pipe size = 39.00(In.)
 Calculated individual pipe flow = 66.096(CFS)
 Normal flow depth in pipe = 24.87(In.)
 Flow top width inside pipe = 37.49(In.)
 Critical Depth = 31.05(In.)
 Pipe flow velocity = 11.84(Ft/s)
 Travel time through pipe = 0.91 min.
 Time of concentration (TC) = 15.90 min.

++++++
 Process from Point/Station 52.000 to Point/Station 52.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 24.284(Ac.)
 Runoff from this stream = 66.096(CFS)
 Time of concentration = 15.90 min.
 Rainfall intensity = 2.995(In/Hr)
 Area averaged loss rate (Fm) = 0.0857(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1948

++++++
 Process from Point/Station 117.000 to Point/Station 118.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.044(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1076.000(Ft.)
 Bottom (of initial area) elevation = 1071.000(Ft.)
 Difference in elevation = 5.000(Ft.)
 Slope = 0.00500 s(%)= 0.50

$$TC = k(0.304) * [(\text{length}^3) / (\text{elevation change})]^{0.2}$$

 Initial area time of concentration = 13.902 min.
 Rainfall intensity = 3.246(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.888
 Subarea runoff = 14.410(CFS)
 Total initial stream area = 5.000(Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.044(In/Hr)

++++++
 Process from Point/Station 118.000 to Point/Station 119.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1071.000(Ft.)

End of street segment elevation = 1068.900(Ft.)
 Length of street segment = 420.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 28.820(CFS)
 Depth of flow = 0.550(Ft.), Average velocity = 2.789(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.79(Ft/s)
 Travel time = 2.51 min. TC = 16.41 min.

Adding area flow to street

COMMERCIAL subarea type

Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000

SCS curve number for soil(AMC 2) = 56.00

Adjusted SCS curve number for AMC 3 = 75.80

Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.044(In/Hr)

Rainfall intensity = 2.939(In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.887$

Subarea runoff = 24.667(CFS) for 10.000(Ac.)

Total runoff = 39.077(CFS)

Effective area this stream = 15.00(Ac.)

Total Study Area (Main Stream No. 1) = 44.00(Ac.)

Area averaged Fm value = 0.044(In/Hr)

Street flow at end of street = 39.077(CFS)

Half street flow at end of street = 19.538(CFS)

Depth of flow = 0.602(Ft.), Average velocity = 3.147(Ft/s)

Note: depth of flow exceeds top of street crown.

Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 119.000 to Point/Station 119.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2

Stream flow area = 15.000(Ac.)

Runoff from this stream = 39.077(CFS)

Time of concentration = 16.41 min.

Rainfall intensity = 2.939(In/Hr)

Area averaged loss rate (Fm) = 0.0440(In/Hr)

Area averaged Pervious ratio (Ap) = 0.1000

Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
------------	-----------------	----------	----------------------------

1	66.096	15.90	2.995
2	39.077	16.41	2.939
Qmax(1) =			
	1.000 *	1.000 *	66.096) +
	1.020 *	0.969 *	39.077) + = 104.688
Qmax(2) =			
	0.980 *	1.000 *	66.096) +
	1.000 *	1.000 *	39.077) + = 103.882

Total of 2 streams to confluence:

Flow rates before confluence point:

66.096 39.077

Maximum flow rates at confluence using above data:

104.688 103.882

Area of streams before confluence:

24.284 15.000

Effective area values after confluence:

38.813 39.284

Results of confluence:

Total flow rate = 104.688(CFS)

Time of concentration = 15.896 min.

Effective stream area after confluence = 38.813(Ac.)

Stream Area average Pervious fraction(Ap) = 0.159

Stream Area average soil loss rate(Fm) = 0.070(In/Hr)

Study area (this main stream) = 39.28(Ac.)

+++++
Process from Point/Station 52.000 to Point/Station 53.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1061.900(Ft.)

Downstream point/station elevation = 1059.400(Ft.)

Pipe length = 500.00(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 104.688(CFS)

Given pipe size = 42.00(In.)

NOTE: Normal flow is pressure flow in user selected pipe size.

The approximate hydraulic grade line above the pipe invert is
5.669(Ft.) at the headworks or inlet of the pipe(s)

Pipe friction loss = 5.412(Ft.)

Minor friction loss = 2.758(Ft.) K-factor = 1.50

Pipe flow velocity = 10.88(Ft/s)

Travel time through pipe = 0.77 min.

Time of concentration (TC) = 16.66 min.

+++++
Process from Point/Station 53.000 to Point/Station 53.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1

Stream flow area = 38.813(Ac.)

Runoff from this stream = 104.688(CFS)

Time of concentration = 16.66 min.

Rainfall intensity = 2.912(In/Hr)

Area averaged loss rate (Fm) = 0.0698(In/Hr)

Area averaged Pervious ratio (Ap) = 0.1586

+++++
 Process from Point/Station 120.000 to Point/Station 121.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1072.000 (Ft.)
 Bottom (of initial area) elevation = 1067.000 (Ft.)
 Difference in elevation = 5.000 (Ft.)
 Slope = 0.00500 s(%) = 0.50
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 13.902 min.
 Rainfall intensity = 3.246 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area ($Q=KCIA$) is $C = 0.888$
 Subarea runoff = 15.851 (CFS)
 Total initial stream area = 5.500 (Ac.)
 Pervious area fraction = 0.100
 Initial area F_m value = 0.044 (In/Hr)

+++++
 Process from Point/Station 121.000 to Point/Station 122.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1067.000 (Ft.)
 End of street segment elevation = 1064.700 (Ft.)
 Length of street segment = 450.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/Hz) = 0.020
 Slope from grade break to crown (v/Hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 28.820 (CFS)
 Depth of flow = 0.548 (Ft.), Average velocity = 2.808 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 2.81 (Ft/s)
 Travel time = 2.67 min. TC = 16.57 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000

SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.044 (In/Hr)
 Rainfall intensity = 2.921 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.886
 Subarea runoff = 21.698 (CFS) for 9.000 (Ac.)
 Total runoff = 37.549 (CFS)
 Effective area this stream = 14.50 (Ac.)
 Total Study Area (Main Stream No. 1) = 58.50 (Ac.)
 Area averaged Fm value = 0.044 (In/Hr)
 Street flow at end of street = 37.549 (CFS)
 Half street flow at end of street = 18.775 (CFS)
 Depth of flow = 0.592 (Ft.), Average velocity = 3.119 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

+++++
 Process from Point/Station 122.000 to Point/Station 122.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 14.500 (Ac.)
 Runoff from this stream = 37.549 (CFS)
 Time of concentration = 16.57 min.
 Rainfall intensity = 2.921 (In/Hr)
 Area averaged loss rate (Fm) = 0.0440 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	104.688	16.66	2.912
2	37.549	16.57	2.921
Qmax(1) =	1.000 * 0.997 *	1.000 * 37.549) + =	104.688) + 142.115
Qmax(2) =	1.003 * 1.000 *	0.995 * 37.549) + =	104.688) + 142.021

Total of 2 streams to confluence:

Flow rates before confluence point:

104.688 37.549

Maximum flow rates at confluence using above data:

142.115 142.021

Area of streams before confluence:

38.813 14.500

Effective area values after confluence:

53.313 53.105

Results of confluence:

Total flow rate = 142.115 (CFS)

Time of concentration = 16.662 min.

Effective stream area after confluence = 53.313 (Ac.)

Stream Area average Pervious fraction (Ap) = 0.143

Stream Area average soil loss rate (Fm) = 0.063 (In/Hr)

Study area (this main stream) = 53.31 (Ac.)

+++++
 Process from Point/Station 53.000 to Point/Station 54.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1052.500(Ft.)
 Downstream point/station elevation = 1048.200(Ft.)
 Pipe length = 860.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 142.115(CFS)
 Given pipe size = 60.00(In.)
 Calculated individual pipe flow = 142.115(CFS)
 Normal flow depth in pipe = 39.56(In.)
 Flow top width inside pipe = 56.87(In.)
 Critical Depth = 41.02(In.)
 Pipe flow velocity = 10.35(Ft/s)
 Travel time through pipe = 1.38 min.
 Time of concentration (TC) = 18.05 min.

+++++
 Process from Point/Station 54.000 to Point/Station 54.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 53.313(Ac.)
 Runoff from this stream = 142.115(CFS)
 Time of concentration = 18.05 min.
 Rainfall intensity = 2.776(In/Hr)
 Area averaged loss rate (Fm) = 0.0628(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1427

+++++
 Process from Point/Station 123.000 to Point/Station 124.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.044(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1064.700(Ft.)
 Bottom (of initial area) elevation = 1059.700(Ft.)
 Difference in elevation = 5.000(Ft.)
 Slope = 0.00500 s(%)= 0.50
 $TC = k(0.304)*[(length^3)/(elevation change)]^{0.2}$
 Initial area time of concentration = 13.902 min.
 Rainfall intensity = 3.246(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.888
 Subarea runoff = 20.174(CFS)
 Total initial stream area = 7.000(Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.044(In/Hr)

+++++

111

Process from Point/Station 124.000 to Point/Station 124.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2

Stream flow area = 7.000 (Ac.)

Runoff from this stream = 20.174 (CFS)

Time of concentration = 13.90 min.

Rainfall intensity = 3.246 (In/Hr)

Area averaged loss rate (Fm) = 0.0440 (In/Hr)

Area averaged Pervious ratio (Ap) = 0.1000

Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
------------	-----------------	----------	----------------------------

1	142.115	18.05	2.776
---	---------	-------	-------

2	20.174	13.90	3.246
---	--------	-------	-------

$Q_{max}(1) =$

$$1.000 * 1.000 * 142.115) + 0.853 * 1.000 * 20.174) + = 159.325$$

$Q_{max}(2) =$

$$1.173 * 0.770 * 142.115) + 1.000 * 1.000 * 20.174) + = 148.633$$

Total of 2 streams to confluence:

Flow rates before confluence point:

142.115 20.174

Maximum flow rates at confluence using above data:

159.325 148.633

Area of streams before confluence:

53.313 7.000

Effective area values after confluence:

60.313 48.069

Results of confluence:

Total flow rate = 159.325 (CFS)

Time of concentration = 18.047 min.

Effective stream area after confluence = 60.313 (Ac.)

Stream Area average Pervious fraction (Ap) = 0.138

Stream Area average soil loss rate (Fm) = 0.061 (In/Hr)

Study area (this main stream) = 60.31 (Ac.)

Process from Point/Station 54.000 to Point/Station 55.000

**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1048.200 (Ft.)

Downstream point/station elevation = 1046.500 (Ft.)

Pipe length = 340.00 (Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 159.325 (CFS)

Given pipe size = 63.00 (In.)

Calculated individual pipe flow = 159.325 (CFS)

Normal flow depth in pipe = 41.06 (In.)

Flow top width inside pipe = 60.03 (In.)

Critical Depth = 42.87 (In.)

Pipe flow velocity = 10.66 (Ft/s)

Travel time through pipe = 0.53 min.

Time of concentration (TC) = 18.58 min.

End of computations, Total Study Area = 65.50 (Ac.)

The following figures may

be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.

Area averaged pervious area fraction(A_p) = 0.142
Area averaged SCS curve number = 56.0

LINE "DZ-2"

San Bernardino County Rational Hydrology Program

(Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
Rational Hydrology Study Date: 01/05/05FONTANA / LINE DZ-2 HYDROLOGY
100 YEAR STORM
JN 04339

Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
10 Year storm 1 hour rainfall = 0.930 (In.)

100 Year storm 1 hour rainfall = 1.350 (In.)

Computed rainfall intensity:

Storm year = 100.00 1 hour rainfall = 1.350 (In.)

Slope used for rainfall intensity curve b = 0.6000

Soil antecedent moisture condition (AMC) = 3

+++++
Process from Point/Station 100.000 to Point/Station 101.000

**** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type

Decimal fraction soil group A = 1.000

Decimal fraction soil group B = 0.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil (AMC 2) = 32.00

Adjusted SCS curve number for AMC 3 = 52.00

Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.079 (In/Hr)

Initial subarea data:

Initial area flow distance = 960.000 (Ft.)

Top (of initial area) elevation = 1103.000 (Ft.)

Bottom (of initial area) elevation = 1098.400 (Ft.)

Difference in elevation = 4.600 (Ft.)

Slope = 0.00479 s(%) = 0.48

TC = $k(0.304) * [(\text{length}^3) / (\text{elevation change})]^{0.2}$

Initial area time of concentration = 13.794 min.

Rainfall intensity = 3.261 (In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area (Q=KCIA) is C = 0.878

Subarea runoff = 14.323 (CFS)

Total initial stream area = 5.000 (Ac.)

Pervious area fraction = 0.100

Initial area Fm value = 0.079 (In/Hr)

+++++
Process from Point/Station 101.000 to Point/Station 102.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1098.400 (Ft.)

End of street segment elevation = 1093.600 (Ft.)

Length of street segment = 590.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 21.485(CFS)
 Depth of flow = 0.474(Ft.), Average velocity = 2.936(Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 18.940(Ft.)
 Flow velocity = 2.94(Ft/s)
 Travel time = 3.35 min. TC = 17.14 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044(In/Hr)
 Rainfall intensity = 2.863(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.881$
 Subarea runoff = 10.890(CFS) for 5.000(Ac.)
 Total runoff = 25.213(CFS)
 Effective area this stream = 10.00(Ac.)
 Total Study Area (Main Stream No. 1) = 10.00(Ac.)
 Area averaged F_m value = 0.061(In/Hr)
 Street flow at end of street = 25.213(CFS)
 Half street flow at end of street = 12.607(CFS)
 Depth of flow = 0.497(Ft.), Average velocity = 3.063(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 102.000 to Point/Station 50.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1085.300(Ft.)
 Downstream point/station elevation = 1079.500(Ft.)
 Pipe length = 460.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 25.213(CFS)
 Given pipe size = 24.00(In.)
 Calculated individual pipe flow = 25.213(CFS)
 Normal flow depth in pipe = 19.50(In.)
 Flow top width inside pipe = 18.73(In.)
 Critical Depth = 21.21(In.)
 Pipe flow velocity = 9.22(Ft/s)
 Travel time through pipe = 0.83 min.
 Time of concentration (TC) = 17.97 min.

+++++
 Process from Point/Station 50.000 to Point/Station 50.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 10.000(Ac.)
 Runoff from this stream = 25.213(CFS)
 Time of concentration = 17.97 min.
 Rainfall intensity = 2.782(In/Hr)
 Area averaged loss rate (Fm) = 0.0613(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000

+++++
 Process from Point/Station 103.000 to Point/Station 104.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1103.000(Ft.)
 Bottom (of initial area) elevation = 1098.400(Ft.)
 Difference in elevation = 4.600(Ft.)
 Slope = 0.00460 s(%)= 0.46
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 14.136 min.
 Rainfall intensity = 3.214(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.878
 Subarea runoff = 15.520(CFS)
 Total initial stream area = 5.500(Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.079(In/Hr)

+++++
 Process from Point/Station 104.000 to Point/Station 105.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1098.400(Ft.)
 End of street segment elevation = 1092.200(Ft.)
 Length of street segment = 700.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150

Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 28.924 (CFS)
 Depth of flow = 0.509 (Ft.), Average velocity = 3.319 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 3.32 (Ft/s)
 Travel time = 3.52 min. TC = 17.65 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.079 (In/Hr)
 Rainfall intensity = 2.813 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) (Q=KCIA) is C = 0.875
 Subarea runoff = 21.395 (CFS) for 9.500 (Ac.)
 Total runoff = 36.915 (CFS)
 Effective area this stream = 15.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 25.00 (Ac.)
 Area averaged Fm value = 0.079 (In/Hr)
 Street flow at end of street = 36.915 (CFS)
 Half street flow at end of street = 18.457 (CFS)
 Depth of flow = 0.544 (Ft.), Average velocity = 3.656 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

++++++
 Process from Point/Station 105.000 to Point/Station 50.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1083.800 (Ft.)
 Downstream point/station elevation = 1079.500 (Ft.)
 Pipe length = 570.00 (Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 36.915 (CFS)
 Given pipe size = 30.00 (In.)
 Calculated individual pipe flow = 36.915 (CFS)
 Normal flow depth in pipe = 25.69 (In.)
 Flow top width inside pipe = 21.05 (In.)
 Critical Depth = 24.68 (In.)
 Pipe flow velocity = 8.25 (Ft/s)
 Travel time through pipe = 1.15 min.
 Time of concentration (TC) = 18.80 min.

++++++
 Process from Point/Station 50.000 to Point/Station 50.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 15.000 (Ac.)
 Runoff from this stream = 36.915 (CFS)
 Time of concentration = 18.80 min.
 Rainfall intensity = 2.708 (In/Hr)
 Area averaged loss rate (Fm) = 0.0785 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000

Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	25.213	17.97	2.782
2	36.915	18.80	2.708
$Q_{max}(1) =$	1.000 * 1.000 * 25.213) + 1.028 * 0.956 * 36.915) + =		61.497
$Q_{max}(2) =$	0.973 * 1.000 * 25.213) + 1.000 * 1.000 * 36.915) + =		61.440

Total of 2 streams to confluence:

Flow rates before confluence point:

25.213 36.915

Maximum flow rates at confluence using above data:

61.497 61.440

Area of streams before confluence:

10.000 15.000

Effective area values after confluence:

24.339 25.000

Results of confluence:

Total flow rate = 61.497(CFS)

Time of concentration = 17.974 min.

Effective stream area after confluence = 24.339(Ac.)

Stream Area average Pervious fraction(Ap) = 0.100Stream Area average soil loss rate(Fm) = 0.072(In/Hr)

Study area (this main stream) = 25.00(Ac.)

+++++
 Process from Point/Station 50.000 to Point/Station 51.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1079.500(Ft.)
 Downstream point/station elevation = 1071.300(Ft.)
 Pipe length = 1320.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 61.497(CFS)
 Given pipe size = 39.00(In.)
 Calculated individual pipe flow = 61.497(CFS)
 Normal flow depth in pipe = 30.19(In.)
 Flow top width inside pipe = 32.62(In.)
 Critical Depth = 30.01(In.)
 Pipe flow velocity = 8.92(Ft/s)
 Travel time through pipe = 2.47 min.
 Time of concentration (TC) = 20.44 min.

+++++
 Process from Point/Station 51.000 to Point/Station 51.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 24.339(Ac.)
 Runoff from this stream = 61.497(CFS)
 Time of concentration = 20.44 min.
 Rainfall intensity = 2.576(In/Hr)
 Area averaged loss rate (Fm) = 0.0716(In/Hr)

Area averaged Pervious ratio (Ap) = 0.1000

+++++
Process from Point/Station 106.000 to Point/Station 107.000
**** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type

Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.044 (In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1093.600(Ft.)
Bottom (of initial area) elevation = 1085.400(Ft.)
Difference in elevation = 8.200(Ft.)
Slope = 0.00820 s(%)= 0.82
TC = $k(0.304) * [(length^3) / (elevation change)]^{0.2}$
Initial area time of concentration = 12.592 min.
Rainfall intensity = 3.445 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.889
Subarea runoff = 16.834 (CFS)
Total initial stream area = 5.500 (Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.044 (In/Hr)

+++++
Process from Point/Station 107.000 to Point/Station 108.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1085.400(Ft.)
End of street segment elevation = 1078.300(Ft.)
Length of street segment = 700.000(Ft.)
Height of curb above gutter flowline = 8.0 (In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500 (In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 26.016(CFS)
Depth of flow = 0.486(Ft.), Average velocity = 3.345(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 19.539(Ft.)
Flow velocity = 3.34(Ft/s)
Travel time = 3.49 min. TC = 16.08 min.
Adding area flow to street
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.044 (In/Hr)
 Rainfall intensity = 2.975 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.887$
 Subarea runoff = 13.499 (CFS) for 6.000 (Ac.)
 Total runoff = 30.333 (CFS)
 Effective area this stream = 11.50 (Ac.)
 Total Study Area (Main Stream No. 1) = 36.50 (Ac.)
 Area averaged Fm value = 0.044 (In/Hr)
 Street flow at end of street = 30.333 (CFS)
 Half street flow at end of street = 15.167 (CFS)
 Depth of flow = 0.507 (Ft.), Average velocity = 3.523 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

++++++
 Process from Point/Station 108.000 to Point/Station 108.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 11.500 (Ac.)
 Runoff from this stream = 30.333 (CFS)
 Time of concentration = 16.08 min.
 Rainfall intensity = 2.975 (In/Hr)
 Area averaged loss rate (Fm) = 0.0440 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	61.497	20.44	2.576
2	30.333	16.08	2.975
$Q_{max}(1)$ =	1.000 * 0.864 *	1.000 * 30.333) + =	61.497) + 87.703
$Q_{max}(2)$ =	1.159 * 1.000 *	0.787 * 30.333) + =	61.497) + 86.418

Total of 2 streams to confluence:
 Flow rates before confluence point:
 61.497 30.333

Maximum flow rates at confluence using above data:
 87.703 86.418

Area of streams before confluence:
 24.339 11.500

Effective area values after confluence:
 35.839 30.648

Results of confluence:
 Total flow rate = 87.703 (CFS)
 Time of concentration = 20.440 min.
 Effective stream area after confluence = 35.839 (Ac.)
 Stream Area average Pervious fraction(Ap) = 0.100
 Stream Area average soil loss rate(Fm) = 0.063 (In/Hr)

Study area (this main stream) = 35.84(Ac.)

+++++
Process from Point/Station 51.000 to Point/Station 55.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1071.300(Ft.)
 Downstream point/station elevation = 1062.400(Ft.)
 Pipe length = 900.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 87.703(CFS)
 Given pipe size = 42.00(In.)
 Calculated individual pipe flow = 87.703(CFS)
 Normal flow depth in pipe = 30.47(In.)
 Flow top width inside pipe = 37.49(In.)
 Critical Depth = 34.95(In.)
 Pipe flow velocity = 11.73(Ft/s)
 Travel time through pipe = 1.28 min.
 Time of concentration (TC) = 21.72 min.

+++++
Process from Point/Station 55.000 to Point/Station 55.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 35.839(Ac.)
 Runoff from this stream = 87.703(CFS)
 Time of concentration = 21.72 min.
 Rainfall intensity = 2.484(In/Hr)
 Area averaged loss rate (Fm) = 0.0627(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000

+++++
Process from Point/Station 109.000 to Point/Station 110.000
**** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.044(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1080.000(Ft.)
 Bottom (of initial area) elevation = 1073.700(Ft.)
 Difference in elevation = 6.300(Ft.)
 Slope = 0.00630 s(%)= 0.63

$$TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$$

 Initial area time of concentration = 13.274 min.
 Rainfall intensity = 3.337(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.888
 Subarea runoff = 13.339(CFS)
 Total initial stream area = 4.500(Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.044(In/Hr)

+++++
 Process from Point/Station 110.000 to Point/Station 111.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1073.700(Ft.)
 End of street segment elevation = 1069.400(Ft.)
 Length of street segment = 350.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/Hz) = 0.020
 Slope from grade break to crown (v/Hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 19.267(CFS)
 Depth of flow = 0.431(Ft.), Average velocity = 3.338(Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 16.777(Ft.)
 Flow velocity = 3.34(Ft/s)
 Travel time = 1.75 min. TC = 15.02 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Previous ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044(In/Hr)
 Rainfall intensity = 3.099(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.887$
 Subarea runoff = 10.031(CFS) for 4.000(Ac.)
 Total runoff = 23.369(CFS)
 Effective area this stream = 8.50(Ac.)
 Total Study Area (Main Stream No. 1) = 45.00(Ac.)
 Area averaged F_m value = 0.044(In/Hr)
 Street flow at end of street = 23.369(CFS)
 Half street flow at end of street = 11.685(CFS)
 Depth of flow = 0.456(Ft.), Average velocity = 3.501(Ft/s)
 Flow width (from curb towards crown) = 18.073(Ft.)

+++++
 Process from Point/Station 111.000 to Point/Station 111.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 8.500(Ac.)
 Runoff from this stream = 23.369(CFS)
 Time of concentration = 15.02 min.
 Rainfall intensity = 3.099(In/Hr)
 Area averaged loss rate (F_m) = 0.0440(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.1000

++++++
Process from Point/Station 125.000 to Point/Station 126.000
**** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1093.200 (Ft.)
 Bottom (of initial area) elevation = 1085.300 (Ft.)
 Difference in elevation = 7.900 (Ft.)
 Slope = 0.00790 s(%) = 0.79
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 12.687 min.
 Rainfall intensity = 3.429 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.888
 Subarea runoff = 16.758 (CFS)
 Total initial stream area = 5.500 (Ac.)
 Pervious area fraction = 0.100
 Initial area F_m value = 0.044 (In/Hr)

++++++
Process from Point/Station 126.000 to Point/Station 127.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1085.300 (Ft.)
 End of street segment elevation = 1076.300 (Ft.)
 Length of street segment = 900.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/Hz) = 0.020
 Slope from grade break to crown (v/Hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 35.039 (CFS)
 Depth of flow = 0.527 (Ft.), Average velocity = 3.715 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 3.71 (Ft/s)
 Travel time = 4.04 min. TC = 16.72 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.044 (In/Hr)
 Rainfall intensity = 2.905 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.886
 Subarea runoff = 28.310 (CFS) for 12.000 (Ac.)
 Total runoff = 45.068 (CFS)
 Effective area this stream = 17.50 (Ac.)
 Total Study Area (Main Stream No. 1) = 62.50 (Ac.)
 Area averaged Fm value = 0.044 (In/Hr)
 Street flow at end of street = 45.068 (CFS)
 Half street flow at end of street = 22.534 (CFS)
 Depth of flow = 0.566 (Ft.), Average velocity = 4.105 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown)= 20.000 (Ft.)

++++++
 Process from Point/Station 127.000 to Point/Station 55.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1069.300 (Ft.)
 Downstream point/station elevation = 1046.500 (Ft.)
 Pipe length = 1000.00 (Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 45.068 (CFS)
 Given pipe size = 30.00 (In.)
 Calculated individual pipe flow = 45.068 (CFS)
 Normal flow depth in pipe = 18.98 (In.)
 Flow top width inside pipe = 28.92 (In.)
 Critical Depth = 26.72 (In.)
 Pipe flow velocity = 13.76 (Ft/s)
 Travel time through pipe = 1.21 min.
 Time of concentration (TC) = 17.94 min.

++++++
 Process from Point/Station 55.000 to Point/Station 55.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 17.500 (Ac.)
 Runoff from this stream = 45.068 (CFS)
 Time of concentration = 17.94 min.
 Rainfall intensity = 2.786 (In/Hr)
 Area averaged loss rate (Fm) = 0.0440 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000

++++++
 Process from Point/Station 128.000 to Point/Station 129.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00

Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.044 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1078.300 (Ft.)
 Bottom (of initial area) elevation = 1069.400 (Ft.)
 Difference in elevation = 8.900 (Ft.)
 Slope = 0.00890 s(%) = 0.89
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 12.388 min.
 Rainfall intensity = 3.479 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area ($Q=KCIA$) is $C = 0.889$
 Subarea runoff = 27.822 (CFS)
 Total initial stream area = 9.000 (Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.044 (In/Hr)

+++++
 Process from Point/Station 129.000 to Point/Station 129.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 4
 Stream flow area = 9.000 (Ac.)
 Runoff from this stream = 27.822 (CFS)
 Time of concentration = 12.39 min.
 Rainfall intensity = 3.479 (In/Hr)
 Area averaged loss rate (Fm) = 0.0440 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000

+++++
 Process from Point/Station 55.000 to Point/Station 55.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil (AMC 2) = 91.40
 Adjusted SCS curve number for AMC 3 = 98.28
 Pervious ratio(Ap) = 0.1380 Max loss rate(Fm) = 0.005 (In/Hr)
 Rainfall intensity = 2.728 (In/Hr) for a 100.0 year storm
 User specified values are as follows:
 $TC = 18.58$ min. Rain intensity = 2.73 (In/Hr)
 Total area this stream = 60.31 (Ac.)
 Total Study Area (Main Stream No. 1) = 131.81 (Ac.)
 Total runoff = 159.33 (CFS)

+++++
 Process from Point/Station 55.000 to Point/Station 55.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 5
 Stream flow area = 60.310 (Ac.)
 Runoff from this stream = 159.330 (CFS)
 Time of concentration = 18.58 min.
 Rainfall intensity = 2.728 (In/Hr)
 Area averaged loss rate (Fm) = 0.0047 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1380
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	87.703	21.72	2.484
2	23.369	15.02	3.099
3	45.068	17.94	2.786
4	27.822	12.39	3.479
5	159.330	18.58	2.728
$Q_{max}(1) =$			
	1.000 *	1.000 *	87.703) +
	0.799 *	1.000 *	23.369) +
	0.890 *	1.000 *	45.068) +
	0.710 *	1.000 *	27.822) +
	0.910 *	1.000 *	159.330) + = 311.289
$Q_{max}(2) =$			
	1.254 *	0.692 *	87.703) +
	1.000 *	1.000 *	23.369) +
	1.114 *	0.838 *	45.068) +
	0.889 *	1.000 *	27.822) +
	1.136 *	0.808 *	159.330) + = 312.601
$Q_{max}(3) =$			
	1.125 *	0.826 *	87.703) +
	0.898 *	1.000 *	23.369) +
	1.000 *	1.000 *	45.068) +
	0.798 *	1.000 *	27.822) +
	1.021 *	0.965 *	159.330) + = 326.824
$Q_{max}(4) =$			
	1.411 *	0.570 *	87.703) +
	1.124 *	0.825 *	23.369) +
	1.253 *	0.691 *	45.068) +
	1.000 *	1.000 *	27.822) +
	1.276 *	0.667 *	159.330) + = 294.594
$Q_{max}(5) =$			
	1.101 *	0.855 *	87.703) +
	0.879 *	1.000 *	23.369) +
	0.979 *	1.000 *	45.068) +
	0.781 *	1.000 *	27.822) +
	1.000 *	1.000 *	159.330) + = 328.291

Total of 5 streams to confluence:

Flow rates before confluence point:

87.703 23.369 45.068 27.822 159.330

Maximum flow rates at confluence using above data:

311.289 312.601 326.824 294.594 328.291

Area of streams before confluence:

35.839 8.500 17.500 9.000 60.310

Effective area values after confluence:

131.149 105.703 122.813 88.749 125.969

Results of confluence:

Total flow rate = 328.291(CFS)

Time of concentration = 18.580 min.

Effective stream area after confluence = 125.969(Ac.)

Stream Area average Pervious fraction(Ap) = 0.117

Stream Area average soil loss rate(Fm) = 0.031(In/Hr)

Study area (this main stream) = 131.15(Ac.)

+++++
Process from Point/Station 55.000 to Point/Station 56.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1046.500(Ft.)
 Downstream point/station elevation = 1043.300(Ft.)
 Pipe length = 1000.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 328.291(CFS)
 Given pipe size = 81.00(In.)
 Calculated individual pipe flow = 328.291(CFS)
 Normal flow depth in pipe = 66.47(In.)
 Flow top width inside pipe = 62.16(In.)
 Critical Depth = 57.84(In.)
 Pipe flow velocity = 10.45(Ft/s)
 Travel time through pipe = 1.60 min.
 Time of concentration (TC) = 20.18 min.

+++++
 Process from Point/Station 56.000 to Point/Station 56.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 125.969(Ac.)
 Runoff from this stream = 328.291(CFS)
 Time of concentration = 20.18 min.
 Rainfall intensity = 2.596(In/Hr)
 Area averaged loss rate (Fm) = 0.0311(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1175

+++++
 Process from Point/Station 130.000 to Point/Station 131.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.044(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1092.200(Ft.)
 Bottom (of initial area) elevation = 1084.100(Ft.)
 Difference in elevation = 8.100(Ft.)
 Slope = 0.00810 s(%)= 0.81
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 12.623 min.
 Rainfall intensity = 3.440(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.888
 Subarea runoff = 16.809(CFS)
 Total initial stream area = 5.500(Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.044(In/Hr)

+++++
 Process from Point/Station 131.000 to Point/Station 132.000
 *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 1084.100(Ft.)

End of street segment elevation = 1075.000(Ft.)
 Length of street segment = 900.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 35.145(CFS)
 Depth of flow = 0.527(Ft.), Average velocity = 3.732(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 3.73(Ft/s)
 Travel time = 4.02 min. TC = 16.64 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Previous ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044(In/Hr)
 Rainfall intensity = 2.914(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.886$
 Subarea runoff = 28.394(CFS) for 12.000(Ac.)
 Total runoff = 45.202(CFS)
 Effective area this stream = 17.50(Ac.)
 Total Study Area (Main Stream No. 1) = 149.31(Ac.)
 Area averaged F_m value = 0.044(In/Hr)
 Street flow at end of street = 45.202(CFS)
 Half street flow at end of street = 22.601(CFS)
 Depth of flow = 0.565(Ft.), Average velocity = 4.124(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 132.000 to Point/Station 56.000
 *** PIPEFLOW TRAVEL TIME (User specified size) ***

Upstream point/station elevation = 1068.000(Ft.)
 Downstream point/station elevation = 1043.300(Ft.)
 Pipe length = 1100.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 45.202(CFS)
 Given pipe size = 30.00(In.)
 Calculated individual pipe flow = 45.202(CFS)
 Normal flow depth in pipe = 19.13(In.)
 Flow top width inside pipe = 28.84(In.)
 Critical Depth = 26.74(In.)
 Pipe flow velocity = 13.69(Ft/s)
 Travel time through pipe = 1.34 min.

Time of concentration (TC) = 17.98 min.

+++++
Process from Point/Station 56.000 to Point/Station 56.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
Stream flow area = 17.500(Ac.)
Runoff from this stream = 45.202(CFS)
Time of concentration = 17.98 min.
Rainfall intensity = 2.782(In/Hr)
Area averaged loss rate (Fm) = 0.0440(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000

+++++
Process from Point/Station 133.000 to Point/Station 134.000
**** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.044 (In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1076.300(Ft.)
Bottom (of initial area) elevation = 1070.900(Ft.)
Difference in elevation = 5.400(Ft.)
Slope = 0.00540 s(%)= 0.54
TC = $k(0.304) * [(length^3) / (elevation change)]^{0.2}$
Initial area time of concentration = 13.690 min.
Rainfall intensity = 3.276(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.888
Subarea runoff = 16.000(CFS)
Total initial stream area = 5.500(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.044 (In/Hr)

+++++
Process from Point/Station 134.000 to Point/Station 135.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1070.900(Ft.)
End of street segment elevation = 1064.100(Ft.)
Length of street segment = 800.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)

Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 48.000(CFS)
 Depth of flow = 0.591(Ft.), Average velocity = 4.008(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 4.01(Ft/s)
 Travel time = 3.33 min. TC = 17.02 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.044(In/Hr)
 Rainfall intensity = 2.875(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.886$
 Subarea runoff = 54.078(CFS) for 22.000(Ac.)
 Total runoff = 70.078(CFS)
 Effective area this stream = 27.50(Ac.)
 Total Study Area (Main Stream No. 1) = 176.81(Ac.)
 Area averaged Fm value = 0.044(In/Hr)
 Street flow at end of street = 70.078(CFS)
 Half street flow at end of street = 35.039(CFS)
 Depth of flow = 0.668(Ft.), Average velocity = 4.649(Ft/s)
 Warning: depth of flow exceeds top of curb
 Note: depth of flow exceeds top of street crown.
 Distance that curb overflow reaches into property = 0.08(Ft.)
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 135.000 to Point/Station 135.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 27.500(Ac.)
 Runoff from this stream = 70.078(CFS)
 Time of concentration = 17.02 min.
 Rainfall intensity = 2.875(In/Hr)
 Area averaged loss rate (Fm) = 0.0440(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	328.291	20.18	2.596
2	45.202	17.98	2.782
3	70.078	17.02	2.875
$Q_{max}(1)$ =			
	1.000 *	1.000 *	328.291) +
	0.932 *	1.000 *	45.202) +
	0.901 *	1.000 *	70.078) + = 433.596
$Q_{max}(2)$ =			

1.072 *	0.891 *	328.291) +	
1.000 *	1.000 *	45.202) +	
0.967 *	1.000 *	70.078) + =	426.738
Qmax(3) =			
1.109 *	0.843 *	328.291) +	
1.034 *	0.946 *	45.202) +	
1.000 *	1.000 *	70.078) + =	421.353

Total of 3 streams to confluence:

Flow rates before confluence point:
328.291 45.202 70.078

Maximum flow rates at confluence using above data:
433.596 426.738 421.353

Area of streams before confluence:
125.969 17.500 27.500

Effective area values after confluence:
170.969 157.276 150.307

Results of confluence:

Total flow rate = 433.596(CFS)

Time of concentration = 20.175 min.

Effective stream area after confluence = 170.969(Ac.)

Stream Area average Pervious fraction(Ap) = 0.113

Stream Area average soil loss rate(Fm) = 0.034(In/Hr)

Study area (this main stream) = 170.97(Ac.)

+++++
Process from Point/Station 56.000 to Point/Station 57.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1043.300(Ft.)
Downstream point/station elevation = 1041.300(Ft.)
Pipe length = 640.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 433.596(CFS)
Given pipe size = 84.00(In.)
NOTE: Normal flow is pressure flow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
3.904(Ft.) at the headworks or inlet of the pipe(s)
Pipe friction loss = 2.947(Ft.)
Minor friction loss = 2.957(Ft.) K-factor = 1.50
Pipe flow velocity = 11.27(Ft/s)
Travel time through pipe = 0.95 min.
Time of concentration (TC) = 21.12 min.

+++++
Process from Point/Station 57.000 to Point/Station 57.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
Stream flow area = 170.969(Ac.)
Runoff from this stream = 433.596(CFS)
Time of concentration = 21.12 min.
Rainfall intensity = 2.526(In/Hr)
Area averaged loss rate (Fm) = 0.0345(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1129

+++++
Process from Point/Station 136.000 to Point/Station 137.000
**** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1091.600 (Ft.)
 Bottom (of initial area) elevation = 1086.600 (Ft.)
 Difference in elevation = 5.000 (Ft.)
 Slope = 0.00500 s(%) = 0.50
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 13.902 min.
 Rainfall intensity = 3.246 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area ($Q=KCIA$) is $C = 0.888$
 Subarea runoff = 15.851 (CFS)
 Total initial stream area = 5.500 (Ac.)
 Pervious area fraction = 0.100
 Initial area F_m value = 0.044 (In/Hr)

+++++
 Process from Point/Station 137.000 to Point/Station 138.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1086.600 (Ft.)
 End of street segment elevation = 1074.600 (Ft.)
 Length of street segment = 875.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 31.702 (CFS)
 Depth of flow = 0.493 (Ft.), Average velocity = 3.935 (Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 19.892 (Ft.)
 Flow velocity = 3.93 (Ft/s)
 Travel time = 3.71 min. $TC = 17.61$ min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044 (In/Hr)
 Rainfall intensity = 2.817 (In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.886$
 Subarea runoff = 25.329(CFS) for 11.000(Ac.)
 Total runoff = 41.180(CFS)
 Effective area this stream = 16.50(Ac.)
 Total Study Area (Main Stream No. 1) = 193.31(Ac.)
 Area averaged Fm value = 0.044(In/Hr)
 Street flow at end of street = 41.180(CFS)
 Half street flow at end of street = 20.590(CFS)
 Depth of flow = 0.528(Ft.), Average velocity = 4.357(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown)= 20.000(Ft.)

+++++
 Process from Point/Station 138.000 to Point/Station 57.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1067.600(Ft.)
 Downstream point/station elevation = 1041.300(Ft.)
 Pipe length = 1320.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 41.180(CFS)
 Given pipe size = 30.00(In.)
 Calculated individual pipe flow = 41.180(CFS)
 Normal flow depth in pipe = 18.70(In.)
 Flow top width inside pipe = 29.07(In.)
 Critical Depth = 25.85(In.)
 Pipe flow velocity = 12.81(Ft/s)
 Travel time through pipe = 1.72 min.
 Time of concentration (TC) = 19.33 min.

+++++
 Process from Point/Station 57.000 to Point/Station 57.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 16.500(Ac.)
 Runoff from this stream = 41.180(CFS)
 Time of concentration = 19.33 min.
 Rainfall intensity = 2.664(In/Hr)
 Area averaged loss rate (Fm) = 0.0440(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000

+++++
 Process from Point/Station 139.000 to Point/Station 140.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.044(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1074.700(Ft.)
 Bottom (of initial area) elevation = 1069.700(Ft.)

Difference in elevation = 5.000(Ft.)
 Slope = 0.00500 s(%)= 0.50
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 13.902 min.
 Rainfall intensity = 3.246(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.888
 Subarea runoff = 15.851(CFS)
 Total initial stream area = 5.500(Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.044(In/Hr)

++++++
 Process from Point/Station 140.000 to Point/Station 141.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1069.700(Ft.)
 End of street segment elevation = 1065.300(Ft.)
 Length of street segment = 875.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 31.702(CFS)
 Depth of flow = 0.565(Ft.), Average velocity = 2.902(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.90(Ft/s)
 Travel time = 5.03 min. TC = 18.93 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.044(In/Hr)
 Rainfall intensity = 2.698(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) (Q=KCIA) is C = 0.885
 Subarea runoff = 23.554(CFS) for 11.000(Ac.)
 Total runoff = 39.405(CFS)
 Effective area this stream = 16.50(Ac.)
 Total Study Area (Main Stream No. 1) = 209.81(Ac.)
 Area averaged Fm value = 0.044(In/Hr)
 Street flow at end of street = 39.405(CFS)
 Half street flow at end of street = 19.703(CFS)
 Depth of flow = 0.603(Ft.), Average velocity = 3.163(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown)= 20.000(Ft.)

+++++
Process from Point/Station 141.000 to Point/Station 141.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
Stream flow area = 16.500 (Ac.)
Runoff from this stream = 39.405 (CFS)
Time of concentration = 18.93 min.
Rainfall intensity = 2.698 (In/Hr)
Area averaged loss rate (Fm) = 0.0440 (In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	433.596	21.12	2.526
2	41.180	19.33	2.664
3	39.405	18.93	2.698
Qmax(1) =			
	1.000 *	1.000 *	433.596) +
	0.947 *	1.000 *	41.180) +
	0.935 *	1.000 *	39.405) + = 509.456
Qmax(2) =			
	1.056 *	0.915 *	433.596) +
	1.000 *	1.000 *	41.180) +
	0.987 *	1.000 *	39.405) + = 498.843
Qmax(3) =			
	1.069 *	0.896 *	433.596) +
	1.013 *	0.979 *	41.180) +
	1.000 *	1.000 *	39.405) + = 495.599

Total of 3 streams to confluence:
Flow rates before confluence point:
433.596 41.180 39.405
Maximum flow rates at confluence using above data:
509.456 498.843 495.599
Area of streams before confluence:
170.969 16.500 16.500
Effective area values after confluence:
203.969 189.433 185.865
Results of confluence:
Total flow rate = 509.456 (CFS)
Time of concentration = 21.122 min.
Effective stream area after confluence = 203.969 (Ac.)
Stream Area average Pervious fraction (Ap) = 0.111
Stream Area average soil loss rate (Fm) = 0.036 (In/Hr)
Study area (this main stream) = 203.97 (Ac.)

+++++
Process from Point/Station 57.000 to Point/Station 63.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1041.300 (Ft.)
Downstream point/station elevation = 1039.500 (Ft.)
Pipe length = 560.00 (Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 509.456 (CFS)

Given pipe size = 92.00 (In.)

NOTE: Normal flow is pressure flow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
3.228 (Ft.) at the headworks or inlet of the pipe(s)

Pipe friction loss = 2.192 (Ft.)

Minor friction loss = 2.837 (Ft.) K-factor = 1.50

Pipe flow velocity = 11.04 (Ft/s)

Travel time through pipe = 0.85 min.

Time of concentration (TC) = 21.97 min.

End of computations, Total Study Area = 209.81 (Ac.)

The following figures may

be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.

Area averaged pervious area fraction (Ap) = 0.111

Area averaged SCS curve number = 63.9

LINE "DZ-1"

San Bernardino County Rational Hydrology Program
 (Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
 Rational Hydrology Study Date: 01/05/05

FONTANA / LINE DZ-1 HYDROLOGY
 100 YEAR STORM
 JN 04339

 Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
 10 Year storm 1 hour rainfall = 0.930 (In.)
 100 Year storm 1 hour rainfall = 1.350 (In.)
 Computed rainfall intensity:
 Storm year = 100.00 1 hour rainfall = 1.350 (In.)
 Slope used for rainfall intensity curve b = 0.6000
 Soil antecedent moisture condition (AMC) = 3

+++++
 Process from Point/Station 300.000 to Point/Station 301.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.044 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1068.100 (Ft.)
 Bottom (of initial area) elevation = 1063.100 (Ft.)
 Difference in elevation = 5.000 (Ft.)
 Slope = 0.00500 s(%) = 0.50
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 13.902 min.
 Rainfall intensity = 3.246 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.888
 Subarea runoff = 14.410 (CFS)
 Total initial stream area = 5.000 (Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.044 (In/Hr)

+++++
 Process from Point/Station 301.000 to Point/Station 302.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1063.100 (Ft.)
 End of street segment elevation = 1060.000 (Ft.)

Length of street segment = 620.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 42.000(Ft.)
 Distance from crown to crossfall grade break = 40.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 35.304(CFS)
 Depth of flow = 0.761(Ft.), Average velocity = 3.099(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 4.73(Ft.)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 33.314(Ft.)
 Flow velocity = 3.10(Ft/s)
 Travel time = 3.33 min. TC = 17.24 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.044(In/Hr)
 Rainfall intensity = 2.853(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.886
 Subarea runoff = 34.894(CFS) for 14.500(Ac.)
 Total runoff = 49.304(CFS)
 Effective area this stream = 19.50(Ac.)
 Total Study Area (Main Stream No. 1) = 19.50(Ac.)
 Area averaged Fm value = 0.044(In/Hr)
 Street flow at end of street = 49.304(CFS)
 Half street flow at end of street = 49.304(CFS)
 Depth of flow = 0.849(Ft.), Average velocity = 3.265(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 9.10(Ft.)
 Flow width (from curb towards crown)= 37.686(Ft.)

+++++
 Process from Point/Station 302.000 to Point/Station 65.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1055.000(Ft.)
 Downstream point/station elevation = 1051.700(Ft.)
 Pipe length = 660.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 49.304(CFS)
 Given pipe size = 36.00(In.)
 Calculated individual pipe flow = 49.304(CFS)
 Normal flow depth in pipe = 31.22(In.)
 Flow top width inside pipe = 24.43(In.)
 Critical Depth = 27.42(In.)
 Pipe flow velocity = 7.57(Ft/s)

Travel time through pipe = 1.45 min.
 Time of concentration (TC) = 18.69 min.

+++++
 Process from Point/Station 65.000 to Point/Station 65.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 19.500(Ac.)
 Runoff from this stream = 49.304(CFS)
 Time of concentration = 18.69 min.
 Rainfall intensity = 2.718(In/Hr)
 Area averaged loss rate (Fm) = 0.0440(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000

+++++
 Process from Point/Station 303.000 to Point/Station 304.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1064.500(Ft.)
 Bottom (of initial area) elevation = 1060.000(Ft.)
 Difference in elevation = 4.500(Ft.)
 Slope = 0.00450 s(%) = 0.45
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 18.168 min.
 Rainfall intensity = 2.765(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.828
 Subarea runoff = 18.322(CFS)
 Total initial stream area = 8.000(Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220(In/Hr)

+++++
 Process from Point/Station 304.000 to Point/Station 304.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 8.000(Ac.)
 Runoff from this stream = 18.322(CFS)
 Time of concentration = 18.17 min.
 Rainfall intensity = 2.765(In/Hr)
 Area averaged loss rate (Fm) = 0.2200(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
------------	-----------------	----------	----------------------------

1	49.304	18.69	2.718
2	18.322	18.17	2.765
Qmax(1) =			
	1.000 *	1.000 *	49.304) +
	0.982 *	1.000 *	18.322) + = 67.290
Qmax(2) =			
	1.017 *	0.972 *	49.304) +
	1.000 *	1.000 *	18.322) + = 67.083

Total of 2 streams to confluence:

Flow rates before confluence point:
49.304 18.322

Maximum flow rates at confluence using above data:

67.290 67.083

Area of streams before confluence:

19.500 8.000

Effective area values after confluence:

27.500 26.955

Results of confluence:

Total flow rate = 67.290(CFS)

Time of concentration = 18.690 min.

Effective stream area after confluence = 27.500(Ac.)

Stream Area average Pervious fraction(Ap) = 0.216

Stream Area average soil loss rate(Fm) = 0.095(In/Hr)

Study area (this main stream) = 27.50(Ac.)

+++++
Process from Point/Station 65.000 to Point/Station 66.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1051.700(Ft.)
Downstream point/station elevation = 1048.400(Ft.)
Pipe length = 660.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 67.290(CFS)
Given pipe size = 48.00(In.)
Calculated individual pipe flow = 67.290(CFS)
Normal flow depth in pipe = 28.55(In.)
Flow top width inside pipe = 47.13(In.)
Critical Depth = 29.74(In.)
Pipe flow velocity = 8.64(Ft/s)
Travel time through pipe = 1.27 min.
Time of concentration (TC) = 19.96 min.

+++++
Process from Point/Station 66.000 to Point/Station 66.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
Stream flow area = 27.500(Ac.)
Runoff from this stream = 67.290(CFS)
Time of concentration = 19.96 min.
Rainfall intensity = 2.613(In/Hr)
Area averaged loss rate (Fm) = 0.0952(In/Hr)
Area averaged Pervious ratio (Ap) = 0.2164

+++++
Process from Point/Station 305.000 to Point/Station 306.000

**** INITIAL AREA EVALUATION ****

SCHOOL subarea

Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm) = 0.264 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1062.000 (Ft.)
 Bottom (of initial area) elevation = 1055.400 (Ft.)
 Difference in elevation = 6.600 (Ft.)
 Slope = 0.00660 s(%) = 0.66
 $TC = k(0.412) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.823 min.
 Rainfall intensity = 2.797 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area ($Q=KCIA$) is $C = 0.815$
 Subarea runoff = 18.235 (CFS)
 Total initial stream area = 8.000 (Ac.)
 Pervious area fraction = 0.600
 Initial area Fm value = 0.264 (In/Hr)

+++++
 Process from Point/Station 306.000 to Point/Station 306.000
 *** CONFLUENCE OF MINOR STREAMS ***

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 8.000 (Ac.)
 Runoff from this stream = 18.235 (CFS)
 Time of concentration = 17.82 min.
 Rainfall intensity = 2.797 (In/Hr)
 Area averaged loss rate (Fm) = 0.2640 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.6000

+++++
 Process from Point/Station 307.000 to Point/Station 308.000
 *** INITIAL AREA EVALUATION ***

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1070.100 (Ft.)
 Bottom (of initial area) elevation = 1065.100 (Ft.)
 Difference in elevation = 5.000 (Ft.)
 Slope = 0.00500 s(%) = 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area ($Q=KCIA$) is $C = 0.829$

Subarea runoff = 11.609(CFS)
 Total initial stream area = 5.000(Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220(In/Hr)

+++++
 Process from Point/Station 308.000 to Point/Station 309.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1065.100(Ft.)
 End of street segment elevation = 1062.700(Ft.)
 Length of street segment = 650.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/Hz) = 0.020
 Slope from grade break to crown (v/Hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 23.219(CFS)
 Depth of flow = 0.540(Ft.), Average velocity = 2.336(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.34(Ft/s)
 Travel time = 4.64 min. TC = 22.43 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220(In/Hr)
 Rainfall intensity = 2.437(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) (Q=KCIA) is C = 0.819
 Subarea runoff = 18.315(CFS) for 10.000(Ac.)
 Total runoff = 29.924(CFS)
 Effective area this stream = 15.00(Ac.)
 Total Study Area (Main Stream No. 1) = 50.50(Ac.)
 Area averaged Fm value = 0.220(In/Hr)
 Street flow at end of street = 29.924(CFS)
 Half street flow at end of street = 14.962(CFS)
 Depth of flow = 0.581(Ft.), Average velocity = 2.584(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 309.000 to Point/Station 310.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1062.700(Ft.)
 End of street segment elevation = 1055.400(Ft.)
 Length of street segment = 1450.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 44.886(CFS)
 Depth of flow = 0.628(Ft.), Average velocity = 3.332(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 3.33(Ft/s)
 Travel time = 7.25 min. TC = 29.68 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.220(In/Hr)
 Rainfall intensity = 2.059(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.804$
 Subarea runoff = 19.743(CFS) for 15.000(Ac.)
 Total runoff = 49.667(CFS)
 Effective area this stream = 30.00(Ac.)
 Total Study Area (Main Stream No. 1) = 65.50(Ac.)
 Area averaged F_m value = 0.220(In/Hr)
 Street flow at end of street = 49.667(CFS)
 Half street flow at end of street = 24.833(CFS)
 Depth of flow = 0.649(Ft.), Average velocity = 3.468(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 310.000 to Point/Station 310.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 30.000(Ac.)
 Runoff from this stream = 49.667(CFS)
 Time of concentration = 29.68 min.
 Rainfall intensity = 2.059(In/Hr)
 Area averaged loss rate (F_m) = 0.2200(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.5000
 Summary of stream data:

Stream	Flow rate	TC	Rainfall Intensity
--------	-----------	----	--------------------

No.	(CFS)	(min)	(In/Hr)
1	67.290	19.96	2.613
2	18.235	17.82	2.797
3	49.667	29.68	2.059
$Q_{max}(1) =$			
	1.000 *	1.000 *	67.290) +
	0.927 *	1.000 *	18.235) +
	1.301 *	0.673 *	49.667) + = 127.656
$Q_{max}(2) =$			
	1.073 *	0.893 *	67.290) +
	1.000 *	1.000 *	18.235) +
	1.401 *	0.601 *	49.667) + = 124.481
$Q_{max}(3) =$			
	0.780 *	1.000 *	67.290) +
	0.709 *	1.000 *	18.235) +
	1.000 *	1.000 *	49.667) + = 115.098

Total of 3 streams to confluence:

Flow rates before confluence point:

67.290 18.235 49.667

Maximum flow rates at confluence using above data:

127.656 124.481 115.098

Area of streams before confluence:

27.500 8.000 30.000

Effective area values after confluence:

55.679 50.569 65.500

Results of confluence:

Total flow rate = 127.656(CFS)

Time of concentration = 19.963 min.

Effective stream area after confluence = 55.679(Ac.)

Stream Area average Pervious fraction(A_p) = 0.393

Stream Area average soil loss rate(F_m) = 0.173(In/Hr)

Study area (this main stream) = 65.50(Ac.)

+++++
Process from Point/Station 66.000 to Point/Station 67.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1048.400(Ft.)
 Downstream point/station elevation = 1044.600(Ft.)
 Pipe length = 760.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 127.656(CFS)
 Given pipe size = 54.00(In.)
 Calculated individual pipe flow = 127.656(CFS)
 Normal flow depth in pipe = 40.73(In.)
 Flow top width inside pipe = 46.49(In.)
 Critical Depth = 39.91(In.)
 Pipe flow velocity = 9.92(Ft/s)
 Travel time through pipe = 1.28 min.
 Time of concentration (TC) = 21.24 min.

+++++
Process from Point/Station 67.000 to Point/Station 67.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 55.679(Ac.)

Runoff from this stream = 127.656(CFS)
 Time of concentration = 21.24 min.
 Rainfall intensity = 2.517(In/Hr)
 Area averaged loss rate (Fm) = 0.1729(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.3931

+++++
 Process from Point/Station 311.000 to Point/Station 312.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1062.400(Ft.)
 Bottom (of initial area) elevation = 1057.400(Ft.)
 Difference in elevation = 5.000(Ft.)
 Slope = 0.00500 s(%)= 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.829
 Subarea runoff = 18.575(CFS)
 Total initial stream area = 8.000(Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220(In/Hr)

+++++
 Process from Point/Station 312.000 to Point/Station 313.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1057.400(Ft.)
 End of street segment elevation = 1052.600(Ft.)
 Length of street segment = 960.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 27.863(CFS)
 Depth of flow = 0.545(Ft.), Average velocity = 2.752(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.75(Ft/s)

Travel time = 5.81 min. TC = 23.60 min.
 Adding area flow to street
 SCHOOL subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.6000 Max loss rate(F_m) = 0.264 (In/Hr)
 Rainfall intensity = 2.363 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.808$
 Subarea runoff = 11.967 (CFS) for 8.000 (Ac.)
 Total runoff = 30.542 (CFS)
 Effective area this stream = 16.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 81.50 (Ac.)
 Area averaged F_m value = 0.242 (In/Hr)
 Street flow at end of street = 30.542 (CFS)
 Half street flow at end of street = 15.271 (CFS)
 Depth of flow = 0.559 (Ft.), Average velocity = 2.854 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

++++++
 Process from Point/Station 313.000 to Point/Station 313.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 16.000 (Ac.)
 Runoff from this stream = 30.542 (CFS)
 Time of concentration = 23.60 min.
 Rainfall intensity = 2.363 (In/Hr)
 Area averaged loss rate (F_m) = 0.2420 (In/Hr)
 Area averaged Pervious ratio (A_p) = 0.5500
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	127.656	21.24	2.517
2	30.542	23.60	2.363
$Q_{max}(1)$ =	1.000 * 1.000 * 127.656) + 1.073 * 0.900 * 30.542) + =		157.141
$Q_{max}(2)$ =	0.934 * 1.000 * 127.656) + 1.000 * 1.000 * 30.542) + =		149.793

Total of 2 streams to confluence:
 Flow rates before confluence point:
 127.656 30.542
 Maximum flow rates at confluence using above data:
 157.141 149.793
 Area of streams before confluence:
 55.679 16.000
 Effective area values after confluence:
 70.078 71.679
 Results of confluence:

Total flow rate = 157.141(CFS)
 Time of concentration = 21.240 min.
 Effective stream area after confluence = 70.078(Ac.)
 Stream Area average Pervious fraction(Ap) = 0.428
 Stream Area average soil loss rate(Fm) = 0.188(In/Hr)
 Study area (this main stream) = 71.68(Ac.)

++++++
 Process from Point/Station 67.000 to Point/Station 68.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1044.600(Ft.)
 Downstream point/station elevation = 1040.800(Ft.)
 Pipe length = 760.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 157.141(CFS)
 Given pipe size = 60.00(In.)
 Calculated individual pipe flow = 157.141(CFS)
 Normal flow depth in pipe = 42.61(In.)
 Flow top width inside pipe = 54.44(In.)
 Critical Depth = 43.13(In.)
 Pipe flow velocity = 10.53(Ft/s)
 Travel time through pipe = 1.20 min.
 Time of concentration (TC) = 22.44 min.

++++++
 Process from Point/Station 68.000 to Point/Station 68.000
 **** CONFLUENCE OF MAIN STREAMS ****

The following data inside Main Stream is listed:
 In Main Stream number: 1
 Effective stream flow area = 70.078(Ac.)
 Total study area this main stream = 81.500(Ac.)
 Runoff from this stream = 157.141(CFS)
 Time of concentration = 22.44 min.
 Rainfall intensity = 2.435(In/Hr)
 Area averaged loss rate (Fm) = 0.1884(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.4281
 Program is now starting with Main Stream No. 2

++++++
 Process from Point/Station 314.000 to Point/Station 315.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1079.500(Ft.)
 Bottom (of initial area) elevation = 1074.500(Ft.)
 Difference in elevation = 5.000(Ft.)
 Slope = 0.00500 s(%) = 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$

Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.829
 Subarea runoff = 11.609 (CFS)
 Total initial stream area = 5.000 (Ac.)
 Previous area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

++++++
 Process from Point/Station 315.000 to Point/Station 318.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1074.500 (Ft.)
 End of street segment elevation = 1069.500 (Ft.)
 Length of street segment = 1000.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/Hz) = 0.020
 Slope from grade break to crown (v/Hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 21.477 (CFS)
 Depth of flow = 0.508 (Ft.), Average velocity = 2.482 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 2.48 (Ft/s)
 Travel time = 6.72 min. TC = 24.50 min.
 Adding area flow to street
 RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Previous ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.220 (In/Hr)
 Rainfall intensity = 2.310 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.814
 Subarea runoff = 13.789 (CFS) for 8.500 (Ac.)
 Total runoff = 25.398 (CFS)
 Effective area this stream = 13.50 (Ac.)
 Total Study Area (Main Stream No. 2) = 13.50 (Ac.)
 Area averaged Fm value = 0.220 (In/Hr)
 Street flow at end of street = 25.398 (CFS)
 Half street flow at end of street = 12.699 (CFS)
 Depth of flow = 0.531 (Ft.), Average velocity = 2.653 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

++++++

Process from Point/Station 318.000 to Point/Station 318.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 2 in normal stream number 1
 Stream flow area = 13.500(Ac.)
 Runoff from this stream = 25.398(CFS)
 Time of concentration = 24.50 min.
 Rainfall intensity = 2.310(In/Hr)
 Area averaged loss rate (Fm) = 0.2200(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000

+++++
 Process from Point/Station 316.000 to Point/Station 317.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1079.500(Ft.)
 Bottom (of initial area) elevation = 1074.500(Ft.)
 Difference in elevation = 5.000(Ft.)
 Slope = 0.00500 s(%)= 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.829
 Subarea runoff = 11.609(CFS)
 Total initial stream area = 5.000(Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220(In/Hr)

+++++
 Process from Point/Station 317.000 to Point/Station 318.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1074.500(Ft.)
 End of street segment elevation = 1069.500(Ft.)
 Length of street segment = 1000.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 22.058(CFS)

Depth of flow = 0.511(Ft.), Average velocity = 2.508(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.51(Ft/s)
 Travel time = 6.64 min. TC = 24.43 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.220(In/Hr)
 Rainfall intensity = 2.314(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.814$
 Subarea runoff = 14.780(CFS) for 9.000(Ac.)
 Total runoff = 26.389(CFS)
 Effective area this stream = 14.00(Ac.)
 Total Study Area (Main Stream No. 2) = 27.50(Ac.)
 Area averaged F_m value = 0.220(In/Hr)
 Street flow at end of street = 26.389(CFS)
 Half street flow at end of street = 13.195(CFS)
 Depth of flow = 0.536(Ft.), Average velocity = 2.694(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 318.000 to Point/Station 318.000
 *** CONFLUENCE OF MINOR STREAMS ***

Along Main Stream number: 2 in normal stream number 2
 Stream flow area = 14.000(Ac.)
 Runoff from this stream = 26.389(CFS)
 Time of concentration = 24.43 min.
 Rainfall intensity = 2.314(In/Hr)
 Area averaged loss rate (F_m) = 0.2200(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	25.398	24.50	2.310
2	26.389	24.43	2.314
$Q_{max}(1) =$			
	1.000 *	1.000 *	25.398) +
	0.998 *	1.000 *	26.389) + = 51.737
$Q_{max}(2) =$			
	1.002 *	0.997 *	25.398) +
	1.000 *	1.000 *	26.389) + = 51.763

Total of 2 streams to confluence:
 Flow rates before confluence point:
 25.398 26.389
 Maximum flow rates at confluence using above data:
 51.737 51.763

Area of streams before confluence:

13.500 14.000

Effective area values after confluence:

27.500 27.461

Results of confluence:

Total flow rate = 51.763(CFS)

Time of concentration = 24.434 min.

Effective stream area after confluence = 27.461(Ac.)

Stream Area average Pervious fraction(Ap) = 0.500

Stream Area average soil loss rate(Fm) = 0.220(In/Hr)

Study area (this main stream) = 27.50(Ac.)

+++++
Process from Point/Station 318.000 to Point/Station 319.000

**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1069.500(Ft.)

End of street segment elevation = 1063.000(Ft.)

Length of street segment = 1300.000(Ft.)

Height of curb above gutter flowline = 8.0(In.)

Width of half street (curb to crown) = 20.000(Ft.)

Distance from crown to crossfall grade break = 18.500(Ft.)

Slope from gutter to grade break (v/hz) = 0.020

Slope from grade break to crown (v/hz) = 0.020

Street flow is on [2] side(s) of the street

Distance from curb to property line = 10.000(Ft.)

Slope from curb to property line (v/hz) = 0.020

Gutter width = 1.500(Ft.)

Gutter hike from flowline = 1.500(In.)

Manning's N in gutter = 0.0150

Manning's N from gutter to grade break = 0.0150

Manning's N from grade break to crown = 0.0150

Estimated mean flow rate at midpoint of street = 69.199(CFS)

Depth of flow = 0.755(Ft.), Average velocity = 3.657(Ft/s)

Warning: depth of flow exceeds top of curb

Note: depth of flow exceeds top of street crown.

Distance that curb overflow reaches into property = 4.41(Ft.)

Streetflow hydraulics at midpoint of street travel:

Halfstreet flow width = 20.000(Ft.)

Flow velocity = 3.66(Ft/s)

Travel time = 5.92 min. TC = 30.36 min.

Adding area flow to street

RESIDENTIAL(5 - 7 dwl/acre)

Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil(AMC 2) = 56.00

Adjusted SCS curve number for AMC 3 = 75.80

Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220(In/Hr)

Rainfall intensity = 2.032(In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.803$

Subarea runoff = 23.179(CFS) for 18.500(Ac.)

Total runoff = 74.942(CFS)

Effective area this stream = 45.96(Ac.)

Total Study Area (Main Stream No. 2) = 46.00(Ac.)

Area averaged Fm value = 0.220(In/Hr)

Street flow at end of street = 74.942(CFS)

Half street flow at end of street = 37.471(CFS)

Depth of flow = 0.782(Ft.), Average velocity = 3.698(Ft/s)
 Warning: depth of flow exceeds top of curb
 Note: depth of flow exceeds top of street crown.
 Distance that curb overflow reaches into property = 5.75(Ft.)
 Flow width (from curb towards crown)= 20.000(Ft.)

+++++
 Process from Point/Station 319.000 to Point/Station 68.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1054.800(Ft.)
 Downstream point/station elevation = 1041.800(Ft.)
 Pipe length = 900.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 74.942(CFS)
 Given pipe size = 48.00(In.)
 Calculated individual pipe flow = 74.942(CFS)
 Normal flow depth in pipe = 22.13(In.)
 Flow top width inside pipe = 47.85(In.)
 Critical Depth = 31.46(In.)
 Pipe flow velocity = 13.26(Ft/s)
 Travel time through pipe = 1.13 min.
 Time of concentration (TC) = 31.49 min.

+++++
 Process from Point/Station 68.000 to Point/Station 68.000
 **** CONFLUENCE OF MAIN STREAMS ****

The following data inside Main Stream is listed:
 In Main Stream number: 2
 Effective stream flow area = 45.961(Ac.)
 Total study area this main stream = 46.000(Ac.)
 Runoff from this stream = 74.942(CFS)
 Time of concentration = 31.49 min.
 Rainfall intensity = 1.988(In/Hr)
 Area averaged loss rate (Fm) = 0.2200(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	157.141	22.44	2.435
2	74.942	31.49	1.988
Qmax(1) =			
	1.000 *	1.000 *	157.141) +
	1.253 *	0.713 *	74.942) + = 224.085
Qmax(2) =			
	0.801 *	1.000 *	157.141) +
	1.000 *	1.000 *	74.942) + = 200.762

Total of 2 main streams to confluence:
 Flow rates before confluence point:
 158.141 75.942
 Maximum flow rates at confluence using above data:
 224.085 200.762
 Effective Area of streams before confluence:
 70.078 45.961
 Effective area values after confluence:

102.834 116.039

Results of confluence:

Total flow rate = 224.085(CFS)
 Time of concentration = 22.443 min.
 Effective stream area after confluence = 102.834(Ac.)
 Stream Area average Pervious fraction(Ap) = 0.457
 Stream Area average soil loss rate(Fm) = 0.201(In/Hr)
 Stream effective area = 116.04(Ac.)

+++++
 Process from Point/Station 68.000 to Point/Station 68.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 102.834(Ac.)
 Runoff from this stream = 224.085(CFS)
 Time of concentration = 22.44 min.
 Rainfall intensity = 2.435(In/Hr)
 Area averaged loss rate (Fm) = 0.2009(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.4566

+++++
 Process from Point/Station 320.000 to Point/Station 321.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1057.100(Ft.)
 Bottom (of initial area) elevation = 1052.100(Ft.)
 Difference in elevation = 5.000(Ft.)
 Slope = 0.00500 s(%) = 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.829
 Subarea runoff = 15.092(CFS)
 Total initial stream area = 6.500(Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220(In/Hr)

+++++
 Process from Point/Station 321.000 to Point/Station 321.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 6.500(Ac.)
 Runoff from this stream = 15.092(CFS)
 Time of concentration = 17.79 min.

Rainfall intensity = 2.800 (In/Hr)
 Area averaged loss rate (Fm) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000

+++++
 Process from Point/Station 322.000 to Point/Station 323.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1057.100 (Ft.)
 Bottom (of initial area) elevation = 1052.100 (Ft.)
 Difference in elevation = 5.000 (Ft.)
 Slope = 0.00500 s(%) = 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.829
 Subarea runoff = 11.609 (CFS)
 Total initial stream area = 5.000 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
 Process from Point/Station 323.000 to Point/Station 323.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 5.000 (Ac.)
 Runoff from this stream = 11.609 (CFS)
 Time of concentration = 17.79 min.
 Rainfall intensity = 2.800 (In/Hr)
 Area averaged loss rate (Fm) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000
 Summary of stream data: .

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	224.085	22.44	2.435
2	15.092	17.79	2.800
3	11.609	17.79	2.800
Qmax(1) =			
	1.000 *	1.000 *	224.085) +
	0.859 *	1.000 *	15.092) +
	0.859 *	1.000 *	11.609) + = 247.015
Qmax(2) =			
	1.163 *	0.793 *	224.085) +
	1.000 *	1.000 *	15.092) +
	1.000 *	1.000 *	11.609) + = 233.286

$Q_{max}(3) =$
 $1.163 * 0.793 * 224.085) +$
 $1.000 * 1.000 * 15.092) +$
 $1.000 * 1.000 * 11.609) + = 233.286$

Total of 3 streams to confluence:
 Flow rates before confluence point:
 $224.085 \quad 15.092 \quad 11.609$
 Maximum flow rates at confluence using above data:
 $247.015 \quad 233.286 \quad 233.286$
 Area of streams before confluence:
 $102.834 \quad 6.500 \quad 5.000$
 Effective area values after confluence:
 $114.334 \quad 93.011 \quad 93.011$
 Results of confluence:
 Total flow rate = 247.015 (CFS)
 Time of concentration = 22.443 min.
 Effective stream area after confluence = 114.334 (Ac.)
 Stream Area average Pervious fraction(Ap) = 0.461
 Stream Area average soil loss rate(Fm) = 0.203 (In/Hr)
 Study area (this main stream) = 114.33 (Ac.)

+++++
 Process from Point/Station 68.000 to Point/Station 69.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1040.800 (Ft.)
 Downstream point/station elevation = 1038.800 (Ft.)
 Pipe length = 400.00 (Ft.) Manning's $N = 0.013$
 No. of pipes = 1 Required pipe flow = 247.015 (CFS)
 Given pipe size = 84.00 (In.)
 Calculated individual pipe flow = 247.015 (CFS)
 Normal flow depth in pipe = 44.30 (In.)
 Flow top width inside pipe = 83.87 (In.)
 Critical Depth = 49.42 (In.)
 Pipe flow velocity = 12.00 (Ft/s)
 Travel time through pipe = 0.56 min.
 Time of concentration (TC) = 23.00 min.

+++++
 Process from Point/Station 69.000 to Point/Station 69.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 114.334 (Ac.)
 Runoff from this stream = 247.015 (CFS)
 Time of concentration = 23.00 min.
 Rainfall intensity = 2.400 (In/Hr)
 Area averaged loss rate (Fm) = 0.2028 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.4610

+++++
 Process from Point/Station 324.000 to Point/Station 325.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1055.000 (Ft.)
 Bottom (of initial area) elevation = 1050.000 (Ft.)
 Difference in elevation = 5.000 (Ft.)
 Slope = 0.00500 s(%)= 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.829
 Subarea runoff = 18.575 (CFS)
 Total initial stream area = 8.000 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

++++++
 Process from Point/Station 325.000 to Point/Station 325.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 8.000 (Ac.)
 Runoff from this stream = 18.575 (CFS)
 Time of concentration = 17.79 min.
 Rainfall intensity = 2.800 (In/Hr)
 Area averaged loss rate (Fm) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000

++++++
 Process from Point/Station 326.000 to Point/Station 327.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1055.000 (Ft.)
 Bottom (of initial area) elevation = 1050.000 (Ft.)
 Difference in elevation = 5.000 (Ft.)
 Slope = 0.00500 s(%)= 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.829
 Subarea runoff = 16.253 (CFS)
 Total initial stream area = 7.000 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
Process from Point/Station 327.000 to Point/Station 327.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
Stream flow area = 7.000(Ac.)
Runoff from this stream = 16.253(CFS)
Time of concentration = 17.79 min.
Rainfall intensity = 2.800(In/Hr)
Area averaged loss rate (Fm) = 0.2200(In/Hr)
Area averaged Pervious ratio (Ap) = 0.5000
Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	247.015	23.00	2.400
2	18.575	17.79	2.800
3	16.253	17.79	2.800
Qmax(1) =			
	1.000 *	1.000 *	247.015) +
	0.845 *	1.000 *	18.575) +
	0.845 *	1.000 *	16.253) + = 276.446
Qmax(2) =			
	1.182 *	0.774 *	247.015) +
	1.000 *	1.000 *	18.575) +
	1.000 *	1.000 *	16.253) + = 260.665
Qmax(3) =			
	1.182 *	0.774 *	247.015) +
	1.000 *	1.000 *	18.575) +
	1.000 *	1.000 *	16.253) + = 260.665

Total of 3 streams to confluence:
Flow rates before confluence point:
247.015 18.575 16.253
Maximum flow rates at confluence using above data:
276.446 260.665 260.665
Area of streams before confluence:
114.334 8.000 7.000
Effective area values after confluence:
129.334 103.437 103.437
Results of confluence:
Total flow rate = 276.446(CFS)
Time of concentration = 22.998 min.
Effective stream area after confluence = 129.334(Ac.)
Stream Area average Pervious fraction(Ap) = 0.465
Stream Area average soil loss rate(Fm) = 0.205(In/Hr)
Study area (this main stream) = 129.33(Ac.)

+++++
Process from Point/Station 69.000 to Point/Station 70.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1038.800(Ft.)
Downstream point/station elevation = 1034.600(Ft.)
Pipe length = 880.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 276.446(CFS)
Given pipe size = 96.00(In.)

Calculated individual pipe flow = 276.446(CFS)
 Normal flow depth in pipe = 44.48(In.)
 Flow top width inside pipe = 95.74(In.)
 Critical Depth = 50.33(In.)
 Pipe flow velocity = 12.12(Ft/s)
 Travel time through pipe = 1.21 min.
 Time of concentration (TC) = 24.21 min.

++++++
 Process from Point/Station 70.000 to Point/Station 70.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 129.334(Ac.)
 Runoff from this stream = 276.446(CFS)
 Time of concentration = 24.21 min.
 Rainfall intensity = 2.327(In/Hr)
 Area averaged loss rate (Fm) = 0.2048(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.4655

++++++
 Process from Point/Station 328.000 to Point/Station 329.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1057.800(Ft.)
 Bottom (of initial area) elevation = 1052.800(Ft.)
 Difference in elevation = 5.000(Ft.)
 Slope = 0.00500 s(%)= 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.829
 Subarea runoff = 11.609(CFS)
 Total initial stream area = 5.000(Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220(In/Hr)

++++++
 Process from Point/Station 329.000 to Point/Station 330.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1052.800(Ft.)
 End of street segment elevation = 1048.800(Ft.)
 Length of street segment = 800.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020

Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 25.541(CFS)
 Depth of flow = 0.532(Ft.), Average velocity = 2.659(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.66(Ft/s)
 Travel time = 5.01 min. TC = 22.80 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.220(In/Hr)
 Rainfall intensity = 2.412(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.818$
 Subarea runoff = 21.932(CFS) for 12.000(Ac.)
 Total runoff = 33.542(CFS)
 Effective area this stream = 17.00(Ac.)
 Total Study Area (Main Stream No. 1) = 89.50(Ac.)
 Area averaged F_m value = 0.220(In/Hr)
 Street flow at end of street = 33.542(CFS)
 Half street flow at end of street = 16.771(CFS)
 Depth of flow = 0.574(Ft.), Average velocity = 2.963(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 330.000 to Point/Station 331.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1048.800(Ft.)
 End of street segment elevation = 1045.500(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 50.312(CFS)

Depth of flow = 0.653(Ft.), Average velocity = 3.479(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 3.48(Ft/s)
 Travel time = 3.16 min. TC = 25.97 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.220(In/Hr)
 Rainfall intensity = 2.231(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.811$
 Subarea runoff = 28.009(CFS) for 17.000(Ac.)
 Total runoff = 61.551(CFS)
 Effective area this stream = 34.00(Ac.)
 Total Study Area (Main Stream No. 1) = 106.50(Ac.)
 Area averaged F_m value = 0.220(In/Hr)
 Street flow at end of street = 61.551(CFS)
 Half street flow at end of street = 30.775(CFS)
 Depth of flow = 0.715(Ft.), Average velocity = 3.606(Ft/s)
 Warning: depth of flow exceeds top of curb
 Note: depth of flow exceeds top of street crown.
 Distance that curb overflow reaches into property = 2.42(Ft.)
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 331.000 to Point/Station 70.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1038.600(Ft.)
 Downstream point/station elevation = 1034.600(Ft.)
 Pipe length = 800.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 61.551(CFS)
 Given pipe size = 42.00(In.)
 Calculated individual pipe flow = 61.551(CFS)
 Normal flow depth in pipe = 30.14(In.)
 Flow top width inside pipe = 37.81(In.)
 Critical Depth = 29.50(In.)
 Pipe flow velocity = 8.32(Ft/s)
 Travel time through pipe = 1.60 min.
 Time of concentration (TC) = 27.57 min.

+++++
 Process from Point/Station 70.000 to Point/Station 70.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 34.000(Ac.)
 Runoff from this stream = 61.551(CFS)
 Time of concentration = 27.57 min.
 Rainfall intensity = 2.153(In/Hr)
 Area averaged loss rate (F_m) = 0.2200(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.5000

+++++
 Process from Point/Station 332.000 to Point/Station 333.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1053.200(Ft.)
 Bottom (of initial area) elevation = 1048.200(Ft.)
 Difference in elevation = 5.000(Ft.)
 Slope = 0.00500 s(%)= 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.829
 Subarea runoff = 11.609(CFS)
 Total initial stream area = 5.000(Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
 Process from Point/Station 333.000 to Point/Station 334.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1048.200(Ft.)
 End of street segment elevation = 1045.600(Ft.)
 Length of street segment = 520.000(Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 20.897(CFS)
 Depth of flow = 0.504(Ft.), Average velocity = 2.455(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.46(Ft/s)
 Travel time = 3.53 min. TC = 21.32 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220 (In/Hr)
 Rainfall intensity = 2.512 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.821
 Subarea runoff = 15.203 (CFS) for 8.000 (Ac.)
 Total runoff = 26.813 (CFS)
 Effective area this stream = 13.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 119.50 (Ac.)
 Area averaged Fm value = 0.220 (In/Hr)
 Street flow at end of street = 26.813 (CFS)
 Half street flow at end of street = 13.406 (CFS)
 Depth of flow = 0.539 (Ft.), Average velocity = 2.711 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown)= 20.000 (Ft.)

++++++
 Process from Point/Station 334.000 to Point/Station 334.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 13.000 (Ac.)
 Runoff from this stream = 26.813 (CFS)
 Time of concentration = 21.32 min.
 Rainfall intensity = 2.512 (In/Hr)
 Area averaged loss rate (Fm) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000

++++++
 Process from Point/Station 335.000 to Point/Station 336.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1053.200 (Ft.)
 Bottom (of initial area) elevation = 1048.200 (Ft.)
 Difference in elevation = 5.000 (Ft.)
 Slope = 0.00500 s(%)= 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.829
 Subarea runoff = 13.931 (CFS)
 Total initial stream area = 6.000 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
 Process from Point/Station 336.000 to Point/Station 337.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1048.200(Ft.)
 End of street segment elevation = 1045.600(Ft.)
 Length of street segment = 520.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 29.023(CFS)
 Depth of flow = 0.551(Ft.), Average velocity = 2.797(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.80(Ft/s)
 Travel time = 3.10 min. TC = 20.89 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220(In/Hr)
 Rainfall intensity = 2.543(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method)(Q=KCIA) is C = 0.822
 Subarea runoff = 25.787(CFS) for 13.000(Ac.)
 Total runoff = 39.719(CFS)
 Effective area this stream = 19.00(Ac.)
 Total Study Area (Main Stream No. 1) = 138.50(Ac.)
 Area averaged Fm value = 0.220(In/Hr)
 Street flow at end of street = 39.719(CFS)
 Half street flow at end of street = 19.859(CFS)
 Depth of flow = 0.605(Ft.), Average velocity = 3.168(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown)= 20.000(Ft.)

+++++
 Process from Point/Station 337.000 to Point/Station 337.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 4
 Stream flow area = 19.000(Ac.)
 Runoff from this stream = 39.719(CFS)
 Time of concentration = 20.89 min.
 Rainfall intensity = 2.543(In/Hr)
 Area averaged loss rate (Fm) = 0.2200(In/Hr)

Area averaged Pervious ratio (Ap) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	276.446	24.21	2.327
2	61.551	27.57	2.153
3	26.813	21.32	2.512
4	39.719	20.89	2.543
$Q_{max}(1) =$			
	1.000 *	1.000 *	276.446) +
	1.090 *	0.878 *	61.551) +
	0.920 *	1.000 *	26.813) +
	0.907 *	1.000 *	39.719) + = 396.068
$Q_{max}(2) =$			
	0.918 *	1.000 *	276.446) +
	1.000 *	1.000 *	61.551) +
	0.843 *	1.000 *	26.813) +
	0.832 *	1.000 *	39.719) + = 370.916
$Q_{max}(3) =$			
	1.087 *	0.881 *	276.446) +
	1.186 *	0.773 *	61.551) +
	1.000 *	1.000 *	26.813) +
	0.987 *	1.000 *	39.719) + = 387.048
$Q_{max}(4) =$			
	1.101 *	0.863 *	276.446) +
	1.202 *	0.758 *	61.551) +
	1.014 *	0.980 *	26.813) +
	1.000 *	1.000 *	39.719) + = 385.123

Total of 4 streams to confluence:

Flow rates before confluence point:

276.446 61.551 26.813 39.719

Maximum flow rates at confluence using above data:

396.068 370.916 387.048 385.123

Area of streams before confluence:

129.334 34.000 13.000 19.000

Effective area values after confluence:

191.189 195.334 172.195 169.091

Results of confluence:

Total flow rate = 396.068 (CFS)

Time of concentration = 24.208 min.

Effective stream area after confluence = 191.189 (Ac.)

Stream Area average Pervious fraction (Ap) = 0.477

Stream Area average soil loss rate (Fm) = 0.210 (In/Hr)

Study area (this main stream) = 195.33 (Ac.)

+++++
 Process from Point/Station 70.000 to Point/Station 71.000

**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1034.600 (Ft.)

Downstream point/station elevation = 1030.600 (Ft.)

Pipe length = 800.00 (Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 396.068 (CFS)

Given pipe size = 102.00 (In.)

Calculated individual pipe flow = 396.068 (CFS)

Normal flow depth in pipe = 52.36 (In.)

Flow top width inside pipe = 101.96(In.)
 Critical Depth = 59.61(In.)
 Pipe flow velocity = 13.51(Ft/s)
 Travel time through pipe = 0.99 min.
 Time of concentration (TC) = 25.19 min.

++++++
 Process from Point/Station 71.000 to Point/Station 71.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 191.189(Ac.)
 Runoff from this stream = 396.068(CFS)
 Time of concentration = 25.19 min.
 Rainfall intensity = 2.272(In/Hr)
 Area averaged loss rate (Fm) = 0.2099(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.4772

++++++
 Process from Point/Station 338.000 to Point/Station 339.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.044(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1056.000(Ft.)
 Bottom (of initial area) elevation = 1051.000(Ft.)
 Difference in elevation = 5.000(Ft.)
 Slope = 0.00500 s(%)= 0.50
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 13.902 min.
 Rainfall intensity = 3.246(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.888
 Subarea runoff = 14.410(CFS)
 Total initial stream area = 5.000(Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.044(In/Hr)

++++++
 Process from Point/Station 339.000 to Point/Station 340.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1051.000(Ft.)
 End of street segment elevation = 1048.600(Ft.)
 Length of street segment = 480.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street

Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 27.379(CFS)
 Depth of flow = 0.542(Ft.), Average velocity = 2.733(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.73(Ft/s)
 Travel time = 2.93 min. TC = 16.83 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044(In/Hr)
 Rainfall intensity = 2.895(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.886$
 Subarea runoff = 21.508(CFS) for 9.000(Ac.)
 Total runoff = 35.918(CFS)
 Effective area this stream = 14.00(Ac.)
 Total Study Area (Main Stream No. 1) = 152.50(Ac.)
 Area averaged F_m value = 0.044(In/Hr)
 Street flow at end of street = 35.918(CFS)
 Half street flow at end of street = 17.959(CFS)
 Depth of flow = 0.586(Ft.), Average velocity = 3.044(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 340.000 to Point/Station 340.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 14.000(Ac.)
 Runoff from this stream = 35.918(CFS)
 Time of concentration = 16.83 min.
 Rainfall intensity = 2.895(In/Hr)
 Area averaged loss rate (F_m) = 0.0440(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.1000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	396.068	25.19	2.272
2	35.918	16.83	2.895
$Q_{max}(1)$ =			
	1.000 * 1.000 * 396.068) +		
	0.782 * 1.000 * 35.918) + =		424.142
$Q_{max}(2)$ =			

$$1.302 * 0.668 * 396.068) +
1.000 * 1.000 * 35.918) + = 380.324$$

Total of 2 streams to confluence:

Flow rates before confluence point:

396.068 35.918

Maximum flow rates at confluence using above data:

424.142 380.324

Area of streams before confluence:

191.189 14.000

Effective area values after confluence:

205.189 141.706

Results of confluence:

Total flow rate = 424.142 (CFS)

Time of concentration = 25.195 min.

Effective stream area after confluence = 205.189 (Ac.)

Stream Area average Pervious fraction (Ap) = 0.451

Stream Area average soil loss rate (Fm) = 0.199 (In/Hr)

Study area (this main stream) = 205.19 (Ac.)

End of computations, Total Study Area = 234.00 (Ac.)

The following figures may

be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction (Ap) = 0.450

Area averaged SCS curve number = 56.0

LINE 'P3'

San Bernardino County Rational Hydrology Program

(Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
Rational Hydrology Study Date: 01/05/05FONTANA / LINE P3 HYDROLOGY
100 YEAR STORM
JN 04339

Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
 10 Year storm 1 hour rainfall = 0.930 (In.)
 100 Year storm 1 hour rainfall = 1.350 (In.)
 Computed rainfall intensity:
 Storm year = 100.00 1 hour rainfall = 1.350 (In.)
 Slope used for rainfall intensity curve b = 0.6000
 Soil antecedent moisture condition (AMC) = 3

+++++
 Process from Point/Station 409.000 to Point/Station 410.000
 **** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.140 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1860.000 (Ft.)
 Bottom (of initial area) elevation = 1460.000 (Ft.)
 Difference in elevation = 400.000 (Ft.)
 Slope = 0.40000 s(%) = 40.00
 $TC = k(0.525) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 9.994 min.
 Rainfall intensity = 3.957 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.868
 Subarea runoff = 25.765 (CFS)
 Total initial stream area = 7.500 (Ac.)
 Pervious area fraction = 1.000
 Initial area Fm value = 0.140 (In/Hr)

+++++
 Process from Point/Station 410.000 to Point/Station 411.000
 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 57.542 (CFS)
 Depth of flow = 0.275 (Ft.), Average velocity = 10.312 (Ft/s)

1	0.00	20.00
2	20.00	0.00
3	40.00	0.00
4	60.00	20.00

Manning's 'N' friction factor = 0.035

Sub-Channel flow =	118.160(CFS)
' ' flow top width =	21.020(Ft.)
' ' velocity=	11.301(Ft/s)
' ' area =	10.455(Sq.Ft)
' ' Froude number =	2.824

Upstream point elevation = 1300.000(Ft.)

Downstream point elevation = 1180.000(Ft.)

Flow length = 650.000(Ft.)

Travel time = 0.96 min.

Time of concentration = 11.71 min.

Depth of flow = 0.510(Ft.)

Average velocity = 11.301(Ft/s)

Total irregular channel flow = 118.160(CFS)

Irregular channel normal depth above invert elev. = 0.510(Ft.)

Average velocity of channel(s) = 11.301(Ft/s)

Sub-Channel No. 1 Critical depth = 1.016(Ft.)

' ' ' Critical flow top width =	22.031(Ft.)
' ' ' Critical flow velocity=	5.536(Ft/s)
' ' ' Critical flow area =	21.344(Sq.Ft)

Adding area flow to channel

UNDEVELOPED (poor cover) subarea

Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil(AMC 2) = 78.00

Adjusted SCS curve number for AMC 3 = 92.80

Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.140 (In/Hr)

Rainfall intensity = 3.598 (In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.865$

Subarea runoff = 57.814(CFS) for 20.000(Ac.)

Total runoff = 143.152(CFS)

Effective area this stream = 46.00(Ac.)

Total Study Area (Main Stream No. 1) = 46.00(Ac.)

Area averaged Fm value = 0.140 (In/Hr)

+++++
Process from Point/Station 412.000 to Point/Station 77.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1152.000(Ft.)

Downstream point/station elevation = 1122.500(Ft.)

Pipe length = 450.00(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 143.152(CFS)

Given pipe size = 30.00(In.)

NOTE: Normal flow is pressure flow in user selected pipe size.

The approximate hydraulic grade line above the pipe invert is 45.103(Ft.) at the headworks or inlet of the pipe(s)

Pipe friction loss = 54.794(Ft.)

Minor friction loss = 19.809(Ft.) K-factor = 1.50

Critical depth could not be calculated.
 Pipe flow velocity = 29.16(Ft/s)
 Travel time through pipe = 0.26 min.
 Time of concentration (TC) = 11.97 min.

+++++
 Process from Point/Station 77.000 to Point/Station 77.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 46.000(Ac.)
 Runoff from this stream = 143.152(CFS)
 Time of concentration = 11.97 min.
 Rainfall intensity = 3.551(In/Hr)
 Area averaged loss rate (Fm) = 0.1400(In/Hr)
 Area averaged Pervious ratio (Ap) = 1.0000

+++++
 Process from Point/Station 413.000 to Point/Station 414.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220(In/Hr)
 Initial subarea data:
 Initial area flow distance = 500.000(Ft.)
 Top (of initial area) elevation = 1163.300(Ft.)
 Bottom (of initial area) elevation = 1129.000(Ft.)
 Difference in elevation = 34.300(Ft.)
 Slope = 0.06860 s(%)= 6.86
 $TC = k(0.389) * [(\text{length}^3) / (\text{elevation change})]^{0.2}$
 Initial area time of concentration = 7.985 min.
 Rainfall intensity = 4.528(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.856
 Subarea runoff = 17.446(CFS)
 Total initial stream area = 4.500(Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220(In/Hr)

+++++
 Process from Point/Station 414.000 to Point/Station 414.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 4.500(Ac.)
 Runoff from this stream = 17.446(CFS)
 Time of concentration = 7.98 min.
 Rainfall intensity = 4.528(In/Hr)
 Area averaged loss rate (Fm) = 0.2200(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000
 Summary of stream data:

Stream	Flow rate	TC	Rainfall Intensity
--------	-----------	----	--------------------

No.	(CFS)	(min)	(In/Hr)
1	143.152	11.97	3.551
2	17.446	7.98	4.528
$Q_{max}(1) =$			
	1.000 * 1.000 *	143.152) +	
	0.773 * 1.000 *	17.446) + =	156.643
$Q_{max}(2) =$			
	1.286 * 0.667 *	143.152) +	
	1.000 * 1.000 *	17.446) + =	140.275

Total of 2 streams to confluence:

Flow rates before confluence point:

143.152 17.446

Maximum flow rates at confluence using above data:

156.643 140.275

Area of streams before confluence:

46.000 4.500

Effective area values after confluence:

50.500 35.187

Results of confluence:

Total flow rate = 156.643(CFS)

Time of concentration = 11.970 min.

Effective stream area after confluence = 50.500(Ac.)

Stream Area average Pervious fraction(Ap) = 0.955

Stream Area average soil loss rate(Fm) = 0.147(In/Hr)

Study area (this main stream) = 50.50(Ac.)

+++++
Process from Point/Station 77.000 to Point/Station 78.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1122.500(Ft.)
Downstream point/station elevation = 1090.500(Ft.)
Pipe length = 550.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 156.643(CFS)
Given pipe size = 39.00(In.)
Calculated individual pipe flow = 156.643(CFS)
Normal flow depth in pipe = 26.06(In.)
Flow top width inside pipe = 36.73(In.)
Critical depth could not be calculated.
Pipe flow velocity = 26.59(Ft/s)
Travel time through pipe = 0.34 min.
Time of concentration (TC) = 12.31 min.

+++++
Process from Point/Station 78.000 to Point/Station 78.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
Stream flow area = 50.500(Ac.)
Runoff from this stream = 156.643(CFS)
Time of concentration = 12.31 min.
Rainfall intensity = 3.491(In/Hr)
Area averaged loss rate (Fm) = 0.1471(In/Hr)
Area averaged Pervious ratio (Ap) = 0.9554

+++++
Process from Point/Station 415.000 to Point/Station 416.000
**** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 550.000 (Ft.)
 Top (of initial area) elevation = 1129.000 (Ft.)
 Bottom (of initial area) elevation = 1097.000 (Ft.)
 Difference in elevation = 32.000 (Ft.)
 Slope = 0.05818 s(%)= 5.82
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 8.573 min.
 Rainfall intensity = 4.339 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.854
 Subarea runoff = 25.947 (CFS)
 Total initial stream area = 7.000 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
Process from Point/Station 416.000 to Point/Station 416.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 7.000 (Ac.)
 Runoff from this stream = 25.947 (CFS)
 Time of concentration = 8.57 min.
 Rainfall intensity = 4.339 (In/Hr)
 Area averaged loss rate (Fm) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000

+++++
Process from Point/Station 417.000 to Point/Station 418.000
**** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.140 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 650.000 (Ft.)
 Top (of initial area) elevation = 1420.000 (Ft.)
 Bottom (of initial area) elevation = 1120.000 (Ft.)
 Difference in elevation = 300.000 (Ft.)
 Slope = 0.46154 s(%)= 46.15
 $TC = k(0.525) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 8.175 min.

Rainfall intensity = 4.464 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.872
 Subarea runoff = 38.917 (CFS)
 Total initial stream area = 10.000 (Ac.)
 Pervious area fraction = 1.000
 Initial area Fm value = 0.140 (In/Hr)

+++++
 Process from Point/Station 418.000 to Point/Station 418.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 10.000 (Ac.)
 Runoff from this stream = 38.917 (CFS)
 Time of concentration = 8.17 min.
 Rainfall intensity = 4.464 (In/Hr)
 Area averaged loss rate (Fm) = 0.1400 (In/Hr)
 Area averaged Pervious ratio (Ap) = 1.0000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	156.643	12.31	3.491
2	25.947	8.57	4.339
3	38.917	8.17	4.464
Qmax(1) =			
1.000 *	1.000 *	156.643) +	
0.794 *	1.000 *	25.947) +	
0.775 *	1.000 *	38.917) + =	207.413
Qmax(2) =			
1.253 *	0.696 *	156.643) +	
1.000 *	1.000 *	25.947) +	
0.971 *	1.000 *	38.917) + =	200.418
Qmax(3) =			
1.291 *	0.664 *	156.643) +	
1.030 *	0.954 *	25.947) +	
1.000 *	1.000 *	38.917) + =	198.654

Total of 3 streams to confluence:
 Flow rates before confluence point:
 156.643 25.947 38.917
 Maximum flow rates at confluence using above data:
 207.413 200.418 198.654
 Area of streams before confluence:
 50.500 7.000 10.000
 Effective area values after confluence:
 67.500 52.157 50.199
 Results of confluence:
 Total flow rate = 207.413 (CFS)
 Time of concentration = 12.314 min.
 Effective stream area after confluence = 67.500 (Ac.)
 Stream Area average Pervious fraction (Ap) = 0.915
 Stream Area average soil loss rate (Fm) = 0.154 (In/Hr)
 Study area (this main stream) = 67.50 (Ac.)

+++++
 Process from Point/Station 78.000 to Point/Station 79.000

**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1090.500(Ft.)
 Downstream point/station elevation = 1060.200(Ft.)
 Pipe length = 900.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 207.413(CFS)
 Given pipe size = 48.00(In.)
 Calculated individual pipe flow = 207.413(CFS)
 Normal flow depth in pipe = 32.11(In.)
 Flow top width inside pipe = 45.18(In.)
 Critical depth could not be calculated.
 Pipe flow velocity = 23.24(Ft/s)
 Travel time through pipe = 0.65 min.
 Time of concentration (TC) = 12.96 min.

+++++
 Process from Point/Station 79.000 to Point/Station 79.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 67.500(Ac.)
 Runoff from this stream = 207.413(CFS)
 Time of concentration = 12.96 min.
 Rainfall intensity = 3.386(In/Hr)
 Area averaged loss rate (Fm) = 0.1536(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.9148

+++++
 Process from Point/Station 400.000 to Point/Station 420.000
 **** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.140(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1850.000(Ft.)
 Bottom (of initial area) elevation = 1320.000(Ft.)
 Difference in elevation = 530.000(Ft.)
 Slope = 0.53000 s(%)= 53.00
 $TC = k(0.525) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 9.447 min.
 Rainfall intensity = 4.093(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.869
 Subarea runoff = 33.798(CFS)
 Total initial stream area = 9.500(Ac.)
 Pervious area fraction = 1.000
 Initial area Fm value = 0.140(In/Hr)

+++++
 Process from Point/Station 420.000 to Point/Station 421.000
 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 50.697(CFS)
 Depth of flow = 0.989(Ft.), Average velocity = 13.832(Ft/s)
 ***** Irregular Channel Data *****

Information entered for subchannel number 1 :
 Point number 'X' coordinate 'Y' coordinate
 1 0.00 20.00
 2 100.00 0.00
 3 150.00 20.00
 Manning's 'N' friction factor = 0.035

Sub-Channel flow = 50.697(CFS)
 ' ' flow top width = 7.415(Ft.)
 ' ' velocity= 13.832(Ft/s)
 ' ' area = 3.665(Sq.Ft)
 ' ' Froude number = 3.467

Upstream point elevation = 1320.000(Ft.)
 Downstream point elevation = 1140.000(Ft.)
 Flow length = 630.000(Ft.)
 Travel time = 0.76 min.
 Time of concentration = 10.21 min.
 Depth of flow = 0.989(Ft.)
 Average velocity = 13.832(Ft/s)
 Total irregular channel flow = 50.697(CFS)
 Irregular channel normal depth above invert elev. = 0.989(Ft.)
 Average velocity of channel(s) = 13.832(Ft/s)

Sub-Channel No. 1 Critical depth = 1.625(Ft.)
 ' ' ' Critical flow top width = 12.188(Ft.)
 ' ' ' Critical flow velocity= 5.120(Ft/s)
 ' ' ' Critical flow area = 9.902(Sq.Ft)

Adding area flow to channel
 UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(A_p) = 1.0000 Max loss rate(F_m)= 0.140(In/Hr)
 Rainfall intensity = 3.908(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.868$
 Subarea runoff = 30.626(CFS) for 9.500(Ac.)
 Total runoff = 64.424(CFS)
 Effective area this stream = 19.00(Ac.)
 Total Study Area (Main Stream No. 1) = 86.50(Ac.)
 Area averaged F_m value = 0.140(In/Hr)

+++++
 Process from Point/Station 421.000 to Point/Station 422.000
 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 86.464(CFS)
 Depth of flow = 1.224(Ft.), Average velocity = 9.235(Ft/s)
 ***** Irregular Channel Data *****

Information entered for subchannel number 1 :

Point number	'X' coordinate	'Y' coordinate
1	0.00	20.00
2	100.00	0.00
3	250.00	20.00

Manning's 'N' friction factor = 0.035

Sub-Channel flow = 86.465(CFS)
 ' ' flow top width = 15.299(Ft.)
 ' ' velocity= 9.235(Ft/s)
 ' ' area = 9.362(Sq.Ft)
 ' ' Froude number = 2.081

Upstream point elevation = 1140.000(Ft.)
 Downstream point elevation = 1064.000(Ft.)
 Flow length = 820.000(Ft.)
 Travel time = 1.48 min.
 Time of concentration = 11.69 min.
 Depth of flow = 1.224(Ft.)
 Average velocity = 9.235(Ft/s)
 Total irregular channel flow = 86.464(CFS)
 Irregular channel normal depth above invert elev. = 1.224(Ft.)
 Average velocity of channel(s) = 9.235(Ft/s)

Sub-Channel No. 1 Critical depth = 1.641(Ft.)
 ' ' ' Critical flow top width = 20.508(Ft.)
 ' ' ' Critical flow velocity= 5.140(Ft/s)
 ' ' ' Critical flow area = 16.823(Sq.Ft)

Adding area flow to channel
 UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.140(In/Hr)
 Rainfall intensity = 3.603(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.865$
 Subarea runoff = 35.299(CFS) for 13.000(Ac.)
 Total runoff = 99.724(CFS)
 Effective area this stream = 32.00(Ac.)
 Total Study Area (Main Stream No. 1) = 99.50(Ac.)
 Area averaged Fm value = 0.140(In/Hr)

+++++
 Process from Point/Station 422.000 to Point/Station 422.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 32.000(Ac.)
 Runoff from this stream = 99.724(CFS)
 Time of concentration = 11.69 min.
 Rainfall intensity = 3.603(In/Hr)
 Area averaged loss rate (Fm) = 0.1400(In/Hr)
 Area averaged Pervious ratio (Ap) = 1.0000
 Summary of stream data:

Stream	Flow rate	TC	Rainfall Intensity
--------	-----------	----	--------------------

No.	(CFS)	(min)	(In/Hr)	
1	207.413	12.96	3.386	
2	99.724	11.69	3.603	
Qmax(1) =				
	1.000 * 0.937 *	1.000 * 1.000 *	207.413) + 99.724) + =	300.892
Qmax(2) =				
	1.067 * 1.000 *	0.902 * 1.000 *	207.413) + 99.724) + =	299.298

Total of 2 streams to confluence:

Flow rates before confluence point:
207.413 99.724

Maximum flow rates at confluence using above data:

300.892 299.298

Area of streams before confluence:

67.500 32.000

Effective area values after confluence:

99.500 92.866

Results of confluence:

Total flow rate = 300.892(CFS)

Time of concentration = 12.960 min.

Effective stream area after confluence = 99.500(Ac.)

Stream Area average Pervious fraction(Ap) = 0.942

Stream Area average soil loss rate(Fm) = 0.149(In/Hr)

Study area (this main stream) = 99.50(Ac.)

+++++
Process from Point/Station 79.000 to Point/Station 80.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1052.000(Ft.)
 Downstream point/station elevation = 1040.200(Ft.)
 Pipe length = 440.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 300.892(CFS)
 Given pipe size = 54.00(In.)
 Calculated individual pipe flow = 300.892(CFS)
 Normal flow depth in pipe = 41.34(In.)
 Flow top width inside pipe = 45.75(In.)
 Critical depth could not be calculated.
 Pipe flow velocity = 23.01(Ft/s)
 Travel time through pipe = 0.32 min.
 Time of concentration (TC) = 13.28 min.

+++++
Process from Point/Station 80.000 to Point/Station 80.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 99.500(Ac.)
 Runoff from this stream = 300.892(CFS)
 Time of concentration = 13.28 min.
 Rainfall intensity = 3.337(In/Hr)
 Area averaged loss rate (Fm) = 0.1493(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.9422

+++++
 Process from Point/Station 423.000 to Point/Station 424.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1102.500 (Ft.)
 Bottom (of initial area) elevation = 1060.500 (Ft.)
 Difference in elevation = 42.000 (Ft.)
 Slope = 0.04200 s(%)= 4.20
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 11.623 min.
 Rainfall intensity = 3.614 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.845
 Subarea runoff = 27.496 (CFS)
 Total initial stream area = 9.000 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
 Process from Point/Station 424.000 to Point/Station 425.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1060.500 (Ft.)
 End of street segment elevation = 1049.000 (Ft.)
 Length of street segment = 800.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 50.408 (CFS)
 Depth of flow = 0.555 (Ft.), Average velocity = 4.788 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 4.79 (Ft/s)
 Travel time = 2.78 min. TC = 14.41 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000

SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.220 (In/Hr)
 Rainfall intensity = 3.177 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.838$
 Subarea runoff = 36.386 (CFS) for 15.000 (Ac.)
 Total runoff = 63.882 (CFS)
 Effective area this stream = 24.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 123.50 (Ac.)
 Area averaged F_m value = 0.220 (In/Hr)
 Street flow at end of street = 63.882 (CFS)
 Half street flow at end of street = 31.941 (CFS)
 Depth of flow = 0.595 (Ft.), Average velocity = 5.260 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

++++++
 Process from Point/Station 425.000 to Point/Station 425.000
 *** CONFLUENCE OF MINOR STREAMS ***

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 24.000 (Ac.)
 Runoff from this stream = 63.882 (CFS)
 Time of concentration = 14.41 min.
 Rainfall intensity = 3.177 (In/Hr)
 Area averaged loss rate (F_m) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (A_p) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	300.892	13.28	3.337
2	63.882	14.41	3.177
$Q_{max}(1) =$			
	1.000 * 1.000 * 300.892) +		
	1.054 * 0.922 * 63.882) + =		362.943
$Q_{max}(2) =$			
	0.950 * 1.000 * 300.892) +		
	1.000 * 1.000 * 63.882) + =		349.731

Total of 2 streams to confluence:
 Flow rates before confluence point:
 300.892 63.882

Maximum flow rates at confluence using above data:
 362.943 349.731

Area of streams before confluence:
 99.500 24.000

Effective area values after confluence:
 121.620 123.500

Results of confluence:
 Total flow rate = 362.943 (CFS)
 Time of concentration = 13.279 min.
 Effective stream area after confluence = 121.620 (Ac.)
 Stream Area average Pervious fraction(A_p) = 0.856
 Stream Area average soil loss rate(F_m) = 0.163 (In/Hr)
 Study area (this main stream) = 123.50 (Ac.)

End of computations, Total Study Area = 123.50 (Ac.)

The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 0.856
Area averaged SCS curve number = 71.7

LINE "P2"

San Bernardino County Rational Hydrology Program

(Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
Rational Hydrology Study Date: 01/05/05-----
FONTANA / LINE P2 HYDROLOGY
100 YEAR STORM
JN 04339-----
Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
10 Year storm 1 hour rainfall = 0.930 (In.)

100 Year storm 1 hour rainfall = 1.350 (In.)

Computed rainfall intensity:

Storm year = 100.00 1 hour rainfall = 1.350 (In.)

Slope used for rainfall intensity curve b = 0.6000

Soil antecedent moisture condition (AMC) = 3

+++++
Process from Point/Station 500.000 to Point/Station 501.000
**** INITIAL AREA EVALUATION ****-----
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 78.00
Adjusted SCS curve number for AMC 3 = 92.80
Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.140 (In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000 (Ft.)
Top (of initial area) elevation = 1620.000 (Ft.)
Bottom (of initial area) elevation = 1350.000 (Ft.)
Difference in elevation = 270.000 (Ft.)
Slope = 0.27000 s(%) = 27.00
TC = $k(0.525) * [(length^3) / (elevation change)]^{0.2}$
Initial area time of concentration = 10.812 min.
Rainfall intensity = 3.775 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.867
Subarea runoff = 19.628 (CFS)
Total initial stream area = 6.000 (Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.140 (In/Hr)+++++
Process from Point/Station 501.000 to Point/Station 502.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****-----
Estimated mean flow rate at midpoint of channel = 34.349 (CFS)
Depth of flow = 0.739 (Ft.), Average velocity = 12.581 (Ft/s)

***** Irregular Channel Data *****

Information entered for subchannel number 1 :

Point number	'X' coordinate	'Y' coordinate
1	0.00	20.00
2	100.00	0.00
3	200.00	20.00

Manning's 'N' friction factor = 0.035

Sub-Channel flow = 34.349(CFS)

'	flow top width =	7.389(Ft.)
'	velocity =	12.581(Ft/s)
'	area =	2.730(Sq.Ft)
'	Froude number =	3.648

Upstream point elevation = 1350.000(Ft.)

Downstream point elevation = 1180.000(Ft.)

Flow length = 500.000(Ft.)

Travel time = 0.66 min.

Time of concentration = 11.47 min.

Depth of flow = 0.739(Ft.)

Average velocity = 12.581(Ft/s)

Total irregular channel flow = 34.349(CFS)

Irregular channel normal depth above invert elev. = 0.739(Ft.)

Average velocity of channel(s) = 12.581(Ft/s)

Sub-Channel No. 1 Critical depth = 1.242(Ft.)

'	'	Critical flow top width =	12.422(Ft.)
'	'	Critical flow velocity =	4.452(Ft/s)
'	'	Critical flow area =	7.715(Sq.Ft)

Adding area flow to channel

UNDEVELOPED (poor cover) subarea

Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil(AMC 2) = 78.00

Adjusted SCS curve number for AMC 3 = 92.80

Pervious ratio(A_p) = 1.0000 Max loss rate(F_m) = 0.140(In/Hr)

Rainfall intensity = 3.642(In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.865$

Subarea runoff = 27.656(CFS) for 9.000(Ac.)

Total runoff = 47.283(CFS)

Effective area this stream = 15.00(Ac.)

Total Study Area (Main Stream No. 1) = 15.00(Ac.)

Area averaged F_m value = 0.140(In/Hr)+++++
Process from Point/Station 502.000 to Point/Station 83.000

**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1167.600(Ft.)

Downstream point/station elevation = 1126.000(Ft.)

Pipe length = 660.00(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 47.283(CFS)

Given pipe size = 24.00(In.)

Calculated individual pipe flow = 47.283(CFS)

Normal flow depth in pipe = 16.73(In.)

Flow top width inside pipe = 22.05 (In.)
 Critical depth could not be calculated.
 Pipe flow velocity = 20.23 (Ft/s)
 Travel time through pipe = 0.54 min.
 Time of concentration (TC) = 12.02 min.

+++++
 Process from Point/Station 83.000 to Point/Station 83.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 15.000 (Ac.)
 Runoff from this stream = 47.283 (CFS)
 Time of concentration = 12.02 min.
 Rainfall intensity = 3.543 (In/Hr)
 Area averaged loss rate (Fm) = 0.1400 (In/Hr)
 Area averaged Pervious ratio (Ap) = 1.0000

+++++
 Process from Point/Station 503.000 to Point/Station 504.000
 **** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.140 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1520.000 (Ft.)
 Bottom (of initial area) elevation = 1180.000 (Ft.)
 Difference in elevation = 340.000 (Ft.)
 Slope = 0.34000 s(%) = 34.00
 $TC = k(0.525) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 10.324 min.
 Rainfall intensity = 3.881 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.868
 Subarea runoff = 33.666 (CFS)
 Total initial stream area = 10.000 (Ac.)
 Pervious area fraction = 1.000
 Initial area Fm value = 0.140 (In/Hr)

+++++
 Process from Point/Station 504.000 to Point/Station 505.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1167.600 (Ft.)
 End of street segment elevation = 1126.000 (Ft.)
 Length of street segment = 660.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street

Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 37.032(CFS)
 Depth of flow = 0.410(Ft.), Average velocity = 7.262(Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 15.743(Ft.)
 Flow velocity = 7.26(Ft/s)
 Travel time = 1.51 min. TC = 11.84 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.220(In/Hr)
 Rainfall intensity = 3.575(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.861$
 Subarea runoff = 3.284(CFS) for 2.000(Ac.)
 Total runoff = 36.950(CFS)
 Effective area this stream = 12.00(Ac.)
 Total Study Area (Main Stream No. 1) = 27.00(Ac.)
 Area averaged F_m value = 0.153(In/Hr)
 Street flow at end of street = 36.950(CFS)
 Half street flow at end of street = 18.475(CFS)
 Depth of flow = 0.410(Ft.), Average velocity = 7.258(Ft/s)
 Flow width (from curb towards crown) = 15.730(Ft.)

++++++
 Process from Point/Station 505.000 to Point/Station 505.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 12.000(Ac.)
 Runoff from this stream = 36.950(CFS)
 Time of concentration = 11.84 min.
 Rainfall intensity = 3.575(In/Hr)
 Area averaged loss rate (F_m) = 0.1533(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.9167
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	47.283	12.02	3.543
2	36.950	11.84	3.575
$Q_{max}(1)$ =	1.000 * 0.991 *	1.000 * 36.950) + =	47.283) + 83.888
$Q_{max}(2)$ =	1.009 * 1.000 *	0.985 * 36.950) + =	47.283) + 83.968

Total of 2 streams to confluence:
 Flow rates before confluence point:
 47.283 36.950
 Maximum flow rates at confluence using above data:
 83.888 83.968
 Area of streams before confluence:
 15.000 12.000
 Effective area values after confluence:
 27.000 26.777
 Results of confluence:
 Total flow rate = 83.968 (CFS)
 Time of concentration = 11.839 min.
 Effective stream area after confluence = 26.777 (Ac.)
 Stream Area average Pervious fraction(Ap) = 0.963
 Stream Area average soil loss rate(Fm) = 0.146 (In/Hr)
 Study area (this main stream) = 27.00 (Ac.)

+++++
 Process from Point/Station 83.000 to Point/Station 85.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1126.000 (Ft.)
 Downstream point/station elevation = 1092.300 (Ft.)
 Pipe length = 450.00 (Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 83.968 (CFS)
 Given pipe size = 36.00 (In.)
 Calculated individual pipe flow = 83.968 (CFS)
 Normal flow depth in pipe = 17.16 (In.)
 Flow top width inside pipe = 35.96 (In.)
 Critical Depth = 33.65 (In.)
 Pipe flow velocity = 25.29 (Ft/s)
 Travel time through pipe = 0.30 min.
 Time of concentration (TC) = 12.14 min.

+++++
 Process from Point/Station 85.000 to Point/Station 85.000
 **** CONFLUENCE OF MAIN STREAMS ****

The following data inside Main Stream is listed:
 In Main Stream number: 1
 Effective stream flow area = 26.777 (Ac.)
 Total study area this main stream = 27.000 (Ac.)
 Runoff from this stream = 83.968 (CFS)
 Time of concentration = 12.14 min.
 Rainfall intensity = 3.522 (In/Hr)
 Area averaged loss rate (Fm) = 0.1459 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.9630
 Program is now starting with Main Stream No. 2

+++++
 Process from Point/Station 506.000 to Point/Station 507.000
 **** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.140 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 2040.000 (Ft.)
 Bottom (of initial area) elevation = 1680.000 (Ft.)
 Difference in elevation = 360.000 (Ft.)
 Slope = 0.36000 s(%) = 36.00
 $TC = k(0.525) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 10.207 min.
 Rainfall intensity = 3.907 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.868
 Subarea runoff = 27.125 (CFS)
 Total initial stream area = 8.000 (Ac.)
 Pervious area fraction = 1.000
 Initial area Fm value = 0.140 (In/Hr)

+++++
 Process from Point/Station 507.000 to Point/Station 508.000
 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 47.469 (CFS)
 Depth of flow = 1.066 (Ft.), Average velocity = 16.723 (Ft/s)
 ***** Irregular Channel Data *****

Information entered for subchannel number 1:
 Point number 'X' coordinate 'Y' coordinate
 1 0.00 20.00
 2 50.00 0.00
 3 100.00 20.00
 Manning's 'N' friction factor = 0.035

Sub-Channel flow = 47.469 (CFS)
 ' flow top width = 5.328 (Ft.)
 ' velocity = 16.723 (Ft/s)
 ' area = 2.839 (Sq.Ft)
 ' Froude number = 4.037

Upstream point elevation = 1680.000 (Ft.)
 Downstream point elevation = 1450.000 (Ft.)
 Flow length = 580.000 (Ft.)
 Travel time = 0.58 min.
 Time of concentration = 10.79 min.
 Depth of flow = 1.066 (Ft.)
 Average velocity = 16.723 (Ft/s)
 Total irregular channel flow = 47.469 (CFS)
 Irregular channel normal depth above invert elev. = 1.066 (Ft.)
 Average velocity of channel(s) = 16.723 (Ft/s)

Sub-Channel No. 1 Critical depth = 1.859 (Ft.)
 ' ' ' Critical flow top width = 9.297 (Ft.)
 ' ' ' Critical flow velocity = 5.492 (Ft/s)
 ' ' ' Critical flow area = 8.643 (Sq.Ft)

Adding area flow to channel
 UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.140 (In/Hr)
 Rainfall intensity = 3.780 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.867
 Subarea runoff = 38.401 (CFS) for 12.000 (Ac.)
 Total runoff = 65.526 (CFS)
 Effective area this stream = 20.00 (Ac.)
 Total Study Area (Main Stream No. 2) = 20.00 (Ac.)
 Area averaged Fm value = 0.140 (In/Hr)

+++++
 Process from Point/Station 508.000 to Point/Station 509.000
 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 110.575 (CFS)
 Depth of flow = 1.532 (Ft.), Average velocity = 18.838 (Ft/s)
 ***** Irregular Channel Data *****

Information entered for subchannel number 1 :
 Point number 'X' coordinate 'Y' coordinate
 1 0.00 20.00
 2 50.00 0.00
 3 100.00 20.00

Manning's 'N' friction factor = 0.035

Sub-Channel flow = 110.575 (CFS)
 ' flow top width = 7.662 (Ft.)
 ' velocity = 18.837 (Ft/s)
 ' area = 5.870 (Sq.Ft)
 ' Froude number = 3.793

Upstream point elevation = 1450.000 (Ft.)
 Downstream point elevation = 1140.000 (Ft.)
 Flow length = 1000.000 (Ft.)
 Travel time = 0.88 min.
 Time of concentration = 11.67 min.
 Depth of flow = 1.532 (Ft.)
 Average velocity = 18.838 (Ft/s)
 Total irregular channel flow = 110.575 (CFS)
 Irregular channel normal depth above invert elev. = 1.532 (Ft.)
 Average velocity of channel(s) = 18.838 (Ft/s)

Sub-Channel No. 1 Critical depth = 2.609 (Ft.)
 ' ' Critical flow top width = 13.047 (Ft.)
 ' ' Critical flow velocity = 6.496 (Ft/s)
 ' ' Critical flow area = 17.022 (Sq.Ft)

Adding area flow to channel
 UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.140 (In/Hr)

Rainfall intensity = 3.606(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.865
 Subarea runoff = 82.631(CFS) for 27.500(Ac.)
 Total runoff = 148.157(CFS)
 Effective area this stream = 47.50(Ac.)
 Total Study Area (Main Stream No. 2) = 47.50(Ac.)
 Area averaged Fm value = 0.140(In/Hr)

++++++
 Process from Point/Station 509.000 to Point/Station 509.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 2 in normal stream number 1
 Stream flow area = 47.500(Ac.)
 Runoff from this stream = 148.157(CFS)
 Time of concentration = 11.67 min.
 Rainfall intensity = 3.606(In/Hr)
 Area averaged loss rate (Fm) = 0.1400(In/Hr)
 Area averaged Pervious ratio (Ap) = 1.0000

++++++
 Process from Point/Station 510.000 to Point/Station 511.000
 **** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.140(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1560.000(Ft.)
 Bottom (of initial area) elevation = 1180.000(Ft.)
 Difference in elevation = 380.000(Ft.)
 Slope = 0.38000 s(%)= 38.00
 $TC = k(0.525)*[(length^3)/(elevation change)]^{0.2}$
 Initial area time of concentration = 10.097 min.
 Rainfall intensity = 3.933(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.868
 Subarea runoff = 32.428(CFS)
 Total initial stream area = 9.500(Ac.)
 Pervious area fraction = 1.000
 Initial area Fm value = 0.140(In/Hr)

++++++
 Process from Point/Station 511.000 to Point/Station 512.000
 **** IMPROVED CHANNEL TRAVEL TIME ****

Upstream point elevation = 1180.000(Ft.)
 Downstream point elevation = 1140.000(Ft.)
 Channel length thru subarea = 530.000(Ft.)
 Channel base width = 0.000(Ft.)
 Slope or 'Z' of left channel bank = 1.500
 Slope or 'Z' of right channel bank = 1.500

Estimated mean flow rate at midpoint of channel = 74.244 (CFS)
 Manning's 'N' = 0.015
 Maximum depth of channel = 2.000 (Ft.)
 Flow(q) thru subarea = 74.244 (CFS)
 Depth of flow = 1.558 (Ft.), Average velocity = 20.385 (Ft/s)
 Channel flow top width = 4.675 (Ft.)
 Flow Velocity = 20.39 (Ft/s)
 Travel time = 0.43 min.
 Time of concentration = 10.53 min.
 Critical depth = 2.688 (Ft.)
 Adding area flow to channel
 UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.140 (In/Hr)
 Rainfall intensity = 3.835 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.867
 Subarea runoff = 80.635 (CFS) for 24.500 (Ac.)
 Total runoff = 113.063 (CFS)
 Effective area this stream = 34.00 (Ac.)
 Total Study Area (Main Stream No. 2) = 81.50 (Ac.)
 Area averaged Fm value = 0.140 (In/Hr)

++++++
 Process from Point/Station 512.000 to Point/Station 512.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 2 in normal stream number 2
 Stream flow area = 34.000 (Ac.)
 Runoff from this stream = 113.063 (CFS)
 Time of concentration = 10.53 min.
 Rainfall intensity = 3.835 (In/Hr)
 Area averaged loss rate (Fm) = 0.1400 (In/Hr)
 Area averaged Pervious ratio (Ap) = 1.0000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	148.157	11.67	3.606
2	113.063	10.53	3.835
Qmax(1) =	1.000 * 1.000 * 148.157) + 0.938 * 1.000 * 113.063) + =		254.205
Qmax(2) =	1.066 * 0.902 * 148.157) + 1.000 * 1.000 * 113.063) + =		255.599

Total of 2 streams to confluence:
 Flow rates before confluence point:
 148.157 113.063
 Maximum flow rates at confluence using above data:
 254.205 255.599
 Area of streams before confluence:

47.500 34.000
 Effective area values after confluence:
 81.500 76.863

Results of confluence:

Total flow rate = 255.599(CFS)
 Time of concentration = 10.531 min.
 Effective stream area after confluence = 76.863(Ac.)
 Stream Area average Pervious fraction(Ap) = 1.000
 Stream Area average soil loss rate(Fm) = 0.140(In/Hr)
 Study area (this main stream) = 81.50(Ac.)

++++++
 Process from Point/Station 512.000 to Point/Station 84.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1137.500(Ft.)
 Downstream point/station elevation = 1110.000(Ft.)
 Pipe length = 450.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 255.599(CFS)
 Given pipe size = 30.00(In.)
 NOTE: Normal flow is pressure flow in user selected pipe size.
 The approximate hydraulic grade line above the pipe invert is
 210.337(Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 174.685(Ft.)
 Minor friction loss = 63.151(Ft.) K-factor = 1.50
 Pipe flow velocity = 52.07(Ft/s)
 Travel time through pipe = 0.14 min.
 Time of concentration (TC) = 10.67 min.

++++++
 Process from Point/Station 84.000 to Point/Station 84.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 2 in normal stream number 1
 Stream flow area = 76.863(Ac.)
 Runoff from this stream = 255.599(CFS)
 Time of concentration = 10.67 min.
 Rainfall intensity = 3.804(In/Hr)
 Area averaged loss rate (Fm) = 0.1400(In/Hr)
 Area averaged Pervious ratio (Ap) = 1.0000

++++++
 Process from Point/Station 513.000 to Point/Station 514.000
 **** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.140(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1770.000(Ft.)
 Bottom (of initial area) elevation = 1460.000(Ft.)
 Difference in elevation = 310.000(Ft.)

Slope = 0.31000 s(%)= 31.00
 $TC = k(0.525) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 10.517 min.
 Rainfall intensity = 3.838 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.867
 Subarea runoff = 23.297 (CFS)
 Total initial stream area = 7.000 (Ac.)
 Previous area fraction = 1.000
 Initial area Fm value = 0.140 (In/Hr)

++++++
 Process from Point/Station 514.000 to Point/Station 515.000
 ***** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 34.945 (CFS)
 Depth of flow = 0.656 (Ft.), Average velocity = 10.827 (Ft/s)
 ***** Irregular Channel Data ****

Information entered for subchannel number 1 :
 Point number 'X' coordinate 'Y' coordinate
 1 0.00 20.00
 2 150.00 0.00
 3 300.00 20.00
 Manning's 'N' friction factor = 0.035

Sub-Channel flow = 34.945 (CFS)
 ' flow top width = 9.840 (Ft.)
 ' velocity = 10.827 (Ft/s)
 ' area = 3.227 (Sq.Ft)
 ' Froude number = 3.332

Upstream point elevation = 1460.000 (Ft.)
 Downstream point elevation = 1140.000 (Ft.)
 Flow length = 1100.000 (Ft.)
 Travel time = 1.69 min.
 Time of concentration = 12.21 min.
 Depth of flow = 0.656 (Ft.)
 Average velocity = 10.827 (Ft/s)
 Total irregular channel flow = 34.945 (CFS)
 Irregular channel normal depth above invert elev. = 0.656 (Ft.)
 Average velocity of channel(s) = 10.827 (Ft/s)

Sub-Channel No. 1 Critical depth = 1.063 (Ft.)
 ' ' Critical flow top width = 15.938 (Ft.)
 ' ' Critical flow velocity = 4.127 (Ft/s)
 ' ' Critical flow area = 8.467 (Sq.Ft)

Adding area flow to channel
 UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Previous ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.140 (In/Hr)
 Rainfall intensity = 3.509 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) (Q=KCIA) is C = 0.864
 Subarea runoff = 19.154 (CFS) for 7.000 (Ac.)

Total runoff = 42.450(CFS)
 Effective area this stream = 14.00(Ac.)
 Total Study Area (Main Stream No. 2) = 95.50(Ac.)
 Area averaged Fm value = 0.140(In/Hr)

+++++
 Process from Point/Station 515.000 to Point/Station 84.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1119.100(Ft.)
 Downstream point/station elevation = 1111.400(Ft.)
 Pipe length = 280.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 42.450(CFS)
 Given pipe size = 18.00(In.)
 NOTE: Normal flow is pressure flow in user selected pipe size.
 The approximate hydraulic grade line above the pipe invert is
 51.453(Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 45.712(Ft.)
 Minor friction loss = 13.441(Ft.) K-factor = 1.50
 Pipe flow velocity = 24.02(Ft/s)
 Travel time through pipe = 0.19 min.
 Time of concentration (TC) = 12.40 min.

+++++
 Process from Point/Station 84.000 to Point/Station 84.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 2 in normal stream number 2
 Stream flow area = 14.000(Ac.)
 Runoff from this stream = 42.450(CFS)
 Time of concentration = 12.40 min.
 Rainfall intensity = 3.476(In/Hr)
 Area averaged loss rate (Fm) = 0.1400(In/Hr)
 Area averaged Pervious ratio (Ap) = 1.0000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	255.599	10.67	3.804
2	42.450	12.40	3.476
Qmax(1) =			
	1.000 *	1.000 *	255.599) +
	1.098 *	0.861 *	42.450) + = 295.718
Qmax(2) =			
	0.911 *	1.000 *	255.599) +
	1.000 *	1.000 *	42.450) + = 275.182

Total of 2 streams to confluence:
 Flow rates before confluence point:
 255.599 42.450
 Maximum flow rates at confluence using above data:
 295.718 275.182
 Area of streams before confluence:
 76.863 14.000
 Effective area values after confluence:
 88.911 90.863
 Results of confluence:

Total flow rate = 295.718(CFS)
 Time of concentration = 10.675 min.
 Effective stream area after confluence = 88.911(Ac.)
 Stream Area average Pervious fraction(Ap) = 1.000
 Stream Area average soil loss rate(Fm) = 0.140(In/Hr)
 Study area (this main stream) = 90.86(Ac.)

+++++
 Process from Point/Station 84.000 to Point/Station 85.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1110.700(Ft.)
 Downstream point/station elevation = 1092.300(Ft.)
 Pipe length = 600.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 295.718(CFS)
 Given pipe size = 30.00(In.)
 NOTE: Normal flow is pressure flow in user selected pipe size.
 The approximate hydraulic grade line above the pipe invert is
 377.902(Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 311.770(Ft.)
 Minor friction loss = 84.532(Ft.) K-factor = 1.50
 Pipe flow velocity = 60.24(Ft/s)
 Travel time through pipe = 0.17 min.
 Time of concentration (TC) = 10.84 min.

+++++
 Process from Point/Station 85.000 to Point/Station 85.000
 **** CONFLUENCE OF MAIN STREAMS ****

The following data inside Main Stream is listed:
 In Main Stream number: 2
 Effective stream flow area = 88.911(Ac.)
 Total study area this main stream = 95.500(Ac.)
 Runoff from this stream = 295.718(CFS)
 Time of concentration = 10.84 min.
 Rainfall intensity = 3.769(In/Hr)
 Area averaged loss rate (Fm) = 0.1400(In/Hr)
 Area averaged Pervious ratio (Ap) = 1.0000
 Program is now starting with Main Stream No. 3

+++++
 Process from Point/Station 516.000 to Point/Station 517.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1148.000(Ft.)
 Bottom (of initial area) elevation = 1101.000(Ft.)
 Difference in elevation = 47.000(Ft.)
 Slope = 0.04700 s(%) = 4.70

TC = $k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 11.364 min.
 Rainfall intensity = 3.664 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.846
 Subarea runoff = 21.695 (CFS)
 Total initial stream area = 7.000 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

++++++
 Process from Point/Station 517.000 to Point/Station 517.000
 **** CONFLUENCE OF MAIN STREAMS ****

The following data inside Main Stream is listed:

In Main Stream number: 3
 Effective stream flow area = 7.000 (Ac.)
 Total study area this main stream = 7.000 (Ac.)
 Runoff from this stream = 21.695 (CFS)
 Time of concentration = 11.36 min.
 Rainfall intensity = 3.664 (In/Hr)
 Area averaged loss rate (Fm) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000

Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	83.968	12.14	3.522
2	295.718	10.84	3.769
3	21.695	11.36	3.664
Qmax(1) =			
	1.000 *	1.000 *	83.968) +
	0.932 *	1.000 *	295.718) +
	0.959 *	1.000 *	21.695) + = 380.382
Qmax(2) =			
	1.073 *	0.893 *	83.968) +
	1.000 *	1.000 *	295.718) +
	1.031 *	0.954 *	21.695) + = 397.535
Qmax(3) =			
	1.042 *	0.936 *	83.968) +
	0.971 *	1.000 *	295.718) +
	1.000 *	1.000 *	21.695) + = 390.773

Total of 3 main streams to confluence:

Flow rates before confluence point:

84.968 296.718 22.695

Maximum flow rates at confluence using above data:

380.382 397.535 390.773

Effective Area of streams before confluence:

26.777 88.911 7.000

Effective area values after confluence:

122.688 119.508 120.985

Results of confluence:

Total flow rate = 397.535 (CFS)

Time of concentration = 10.841 min.

Effective stream area after confluence = 119.508 (Ac.)

Stream Area average Pervious fraction (Ap) = 0.963

Stream Area average soil loss rate(Fm) = 0.146(In/Hr)
 Stream effective area = 122.69(Ac.)

+++++
 Process from Point/Station 85.000 to Point/Station 86.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1092.300(Ft.)
 Downstream point/station elevation = 1059.300(Ft.)
 Pipe length = 950.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 397.535(CFS)
 Given pipe size = 39.00(In.)
 NOTE: Normal flow is pressure flow in user selected pipe size.
 The approximate hydraulic grade line above the pipe invert is
 240.629(Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 220.142(Ft.)
 Minor friction loss = 53.486(Ft.) K-factor = 1.50
 Pipe flow velocity = 47.92(Ft/s)
 Travel time through pipe = 0.33 min.
 Time of concentration (TC) = 11.17 min.

+++++
 Process from Point/Station 86.000 to Point/Station 86.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 119.508(Ac.)
 Runoff from this stream = 397.535(CFS)
 Time of concentration = 11.17 min.
 Rainfall intensity = 3.701(In/Hr)
 Area averaged loss rate (Fm) = 0.1459(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.9634

+++++
 Process from Point/Station 518.000 to Point/Station 519.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1148.000(Ft.)
 Bottom (of initial area) elevation = 1101.000(Ft.)
 Difference in elevation = 47.000(Ft.)
 Slope = 0.04700 s(%) = 4.70
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 11.364 min.
 Rainfall intensity = 3.664(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.846
 Subarea runoff = 26.344(CFS)
 Total initial stream area = 8.500(Ac.)
 Pervious area fraction = 0.500

Initial area Fm value = 0.220 (In/Hr)

+++++
Process from Point/Station 519.000 to Point/Station 520.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1101.000 (Ft.)
End of street segment elevation = 1066.500 (Ft.)
Length of street segment = 900.000 (Ft.)
Height of curb above gutter flowline = 8.0 (In.)
Width of half street (curb to crown) = 20.000 (Ft.)
Distance from crown to crossfall grade break = 18.500 (Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000 (Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500 (Ft.)
Gutter hike from flowline = 1.500 (In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 39.516 (CFS)
Depth of flow = 0.450 (Ft.), Average velocity = 6.118 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 17.771 (Ft.)
Flow velocity = 6.12 (Ft/s)
Travel time = 2.45 min. TC = 13.82 min.
Adding area flow to street
RESIDENTIAL (5 - 7 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.220 (In/Hr)
Rainfall intensity = 3.258 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.839
Subarea runoff = 20.144 (CFS) for 8.500 (Ac.)
Total runoff = 46.487 (CFS)
Effective area this stream = 17.00 (Ac.)
Total Study Area (Main Stream No. 1) = 24.00 (Ac.)
Area averaged Fm value = 0.220 (In/Hr)
Street flow at end of street = 46.487 (CFS)
Half street flow at end of street = 23.244 (CFS)
Depth of flow = 0.473 (Ft.), Average velocity = 6.369 (Ft/s)
Flow width (from curb towards crown) = 18.917 (Ft.)

+++++
Process from Point/Station 520.000 to Point/Station 520.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
Stream flow area = 17.000 (Ac.)
Runoff from this stream = 46.487 (CFS)
Time of concentration = 13.82 min.
Rainfall intensity = 3.258 (In/Hr)

Area averaged loss rate (Fm) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000

+++++
 Process from Point/Station 521.000 to Point/Station 522.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1111.000 (Ft.)
 Bottom (of initial area) elevation = 1101.000 (Ft.)
 Difference in elevation = 10.000 (Ft.)
 Slope = 0.01000 s(%) = 1.00
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 15.486 min.
 Rainfall intensity = 3.043 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.835
 Subarea runoff = 13.972 (CFS)
 Total initial stream area = 5.500 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
 Process from Point/Station 522.000 to Point/Station 523.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1101.000 (Ft.)
 End of street segment elevation = 1066.500 (Ft.)
 Length of street segment = 900.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 35.566 (CFS)
 Depth of flow = 0.436 (Ft.), Average velocity = 5.961 (Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 17.064 (Ft.)
 Flow velocity = 5.96 (Ft/s)
 Travel time = 2.52 min. TC = 18.00 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220 (In/Hr)
 Rainfall intensity = 2.780 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.829$
 Subarea runoff = 37.865 (CFS) for 17.000 (Ac.)
 Total runoff = 51.838 (CFS)
 Effective area this stream = 22.50 (Ac.)
 Total Study Area (Main Stream No. 1) = 46.50 (Ac.)
 Area averaged Fm value = 0.220 (In/Hr)
 Street flow at end of street = 51.838 (CFS)
 Half street flow at end of street = 25.919 (CFS)
 Depth of flow = 0.489 (Ft.), Average velocity = 6.542 (Ft/s)
 Flow width (from curb towards crown) = 19.724 (Ft.)

++++++
 Process from Point/Station 523.000 to Point/Station 523.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 22.500 (Ac.)
 Runoff from this stream = 51.838 (CFS)
 Time of concentration = 18.00 min.
 Rainfall intensity = 2.780 (In/Hr)
 Area averaged loss rate (Fm) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	397.535	11.17	3.701
2	46.487	13.82	3.258
3	51.838	18.00	2.780
$Q_{max}(1)$ =			
1.000 *	1.000 *	397.535) +	
1.146 *	0.809 *	46.487) +	
1.360 *	0.621 *	51.838) + =	484.351
$Q_{max}(2)$ =			
0.875 *	1.000 *	397.535) +	
1.000 *	1.000 *	46.487) +	
1.187 *	0.767 *	51.838) + =	441.703
$Q_{max}(3)$ =			
0.741 *	1.000 *	397.535) +	
0.843 *	1.000 *	46.487) +	
1.000 *	1.000 *	51.838) + =	385.501

Total of 3 streams to confluence:
 Flow rates before confluence point:
 397.535 46.487 51.838
 Maximum flow rates at confluence using above data:
 484.351 441.703 385.501
 Area of streams before confluence:
 119.508 17.000 22.500
 Effective area values after confluence:

147.215 153.775 159.008

Results of confluence:

Total flow rate = 484.351(CFS)
 Time of concentration = 11.171 min.
 Effective stream area after confluence = 147.215(Ac.)
 Stream Area average Pervious fraction(A_p) = 0.848
 Stream Area average soil loss rate(F_m) = 0.164(In/Hr)
 Study area (this main stream) = 159.01(Ac.)

+++++
 Process from Point/Station 86.000 to Point/Station 87.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1059.300(Ft.)
 Downstream point/station elevation = 1053.200(Ft.)
 Pipe length = 445.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 484.351(CFS)
 Given pipe size = 48.00(In.)
 NOTE: Normal flow is pressure flow in user selected pipe size.
 The approximate hydraulic grade line above the pipe invert is
 79.081(Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 50.579(Ft.)
 Minor friction loss = 34.602(Ft.) K-factor = 1.50
 Pipe flow velocity = 38.54(Ft/s)
 Travel time through pipe = 0.19 min.
 Time of concentration (TC) = 11.36 min.

+++++
 Process from Point/Station 87.000 to Point/Station 87.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 147.215(Ac.)
 Runoff from this stream = 484.351(CFS)
 Time of concentration = 11.36 min.
 Rainfall intensity = 3.664(In/Hr)
 Area averaged loss rate (F_m) = 0.1643(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.8483

+++++
 Process from Point/Station 524.000 to Point/Station 525.000
 **** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(A_p) = 1.0000 Max loss rate(F_m) = 0.140(In/Hr)
 Initial subarea data:
 Initial area flow distance = 750.000(Ft.)
 Top (of initial area) elevation = 1072.300(Ft.)
 Bottom (of initial area) elevation = 1065.000(Ft.)
 Difference in elevation = 7.300(Ft.)
 Slope = 0.00973 s(%) = 0.97
 $TC = k(0.525)*[(length^3)/(elevation change)]^{0.2}$

Initial area time of concentration = 18.730 min.
 Rainfall intensity = 2.715 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.854
 Subarea runoff = 20.854 (CFS)
 Total initial stream area = 9.000 (Ac.)
 Pervious area fraction = 1.000
 Initial area Fm value = 0.140 (In/Hr)

+++++
 Process from Point/Station 525.000 to Point/Station 525.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 9.000 (Ac.)
 Runoff from this stream = 20.854 (CFS)
 Time of concentration = 18.73 min.
 Rainfall intensity = 2.715 (In/Hr)
 Area averaged loss rate (Fm) = 0.1400 (In/Hr)
 Area averaged Pervious ratio (Ap) = 1.0000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	484.351	11.36	3.664
2	20.854	18.73	2.715
Qmax(1) =	1.000 *	1.000 *	484.351) +
	1.369 *	0.607 *	20.854) + = 501.668
Qmax(2) =	0.729 *	1.000 *	484.351) +
	1.000 *	1.000 *	20.854) + = 373.842

Total of 2 streams to confluence:
 Flow rates before confluence point:
 484.351 20.854
 Maximum flow rates at confluence using above data:
 501.668 373.842
 Area of streams before confluence:
 147.215 9.000
 Effective area values after confluence:
 152.675 156.215
 Results of confluence:
 Total flow rate = 501.668 (CFS)
 Time of concentration = 11.363 min.
 Effective stream area after confluence = 152.675 (Ac.)
 Stream Area average Pervious fraction (Ap) = 0.857
 Stream Area average soil loss rate (Fm) = 0.163 (In/Hr)
 Study area (this main stream) = 156.21 (Ac.)

+++++
 Process from Point/Station 87.000 to Point/Station 88.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1050.900 (Ft.)
 Downstream point/station elevation = 1033.600 (Ft.)
 Pipe length = 370.00 (Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 501.668 (CFS)

Given pipe size = 54.00 (In.)

NOTE: Normal flow is pressure flow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
29.946 (Ft.) at the headworks or inlet of the pipe(s)

Pipe friction loss = 24.072 (Ft.)

Minor friction loss = 23.174 (Ft.) K-factor = 1.50

Pipe flow velocity = 31.54 (Ft/s)

Travel time through pipe = 0.20 min.

Time of concentration (TC) = 11.56 min.

+++++
Process from Point/Station 88.000 to Point/Station 88.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1

Stream flow area = 152.675 (Ac.)

Runoff from this stream = 501.668 (CFS)

Time of concentration = 11.56 min.

Rainfall intensity = 3.626 (In/Hr)

Area averaged loss rate (Fm) = 0.1629 (In/Hr)

Area averaged Pervious ratio (Ap) = 0.8570

+++++
Process from Point/Station 526.000 to Point/Station 527.000
**** INITIAL AREA EVALUATION ****

RESIDENTIAL (5 - 7 dwl/acre)

Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil (AMC 2) = 56.00

Adjusted SCS curve number for AMC 3 = 75.80

Pervious ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.220 (In/Hr)

Initial subarea data:

Initial area flow distance = 1000.000 (Ft.)

Top (of initial area) elevation = 1065.000 (Ft.)

Bottom (of initial area) elevation = 1060.000 (Ft.)

Difference in elevation = 5.000 (Ft.)

Slope = 0.00500 s(%) = 0.50

TC = $k(0.389) * [(\text{length}^3) / (\text{elevation change})]^{0.2}$

Initial area time of concentration = 17.789 min.

Rainfall intensity = 2.800 (In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area (Q=KCIA) is C = 0.829

Subarea runoff = 15.092 (CFS)

Total initial stream area = 6.500 (Ac.)

Pervious area fraction = 0.500

Initial area Fm value = 0.220 (In/Hr)

+++++
Process from Point/Station 527.000 to Point/Station 527.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2

Stream flow area = 6.500 (Ac.)

Runoff from this stream = 15.092 (CFS)

Time of concentration = 17.79 min.

Rainfall intensity = 2.800 (In/Hr)

Area averaged loss rate (Fm) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000

+++++
 Process from Point/Station 528.000 to Point/Station 529.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1065.000 (Ft.)
 Bottom (of initial area) elevation = 1060.000 (Ft.)
 Difference in elevation = 5.000 (Ft.)
 Slope = 0.00500 s(%)= 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.829
 Subarea runoff = 15.092 (CFS)
 Total initial stream area = 6.500 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
 Process from Point/Station 529.000 to Point/Station 529.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 6.500 (Ac.)
 Runoff from this stream = 15.092 (CFS)
 Time of concentration = 17.79 min.
 Rainfall intensity = 2.800 (In/Hr)
 Area averaged loss rate (Fm) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	501.668	11.56	3.626
2	15.092	17.79	2.800
3	15.092	17.79	2.800
Qmax(1) =			
1.000 * 1.000 * 501.668) +			
1.320 * 0.650 * 15.092) +			
1.320 * 0.650 * 15.092) + = 527.564			
Qmax(2) =			
0.761 * 1.000 * 501.668) +			
1.000 * 1.000 * 15.092) +			
1.000 * 1.000 * 15.092) + = 412.130			
Qmax(3) =			

$$\begin{array}{r} 0.761 * 1.000 * 501.668) + \\ 1.000 * 1.000 * 15.092) + \\ 1.000 * 1.000 * 15.092) + = 412.130 \end{array}$$

Total of 3 streams to confluence:

Flow rates before confluence point:

501.668 15.092 15.092

Maximum flow rates at confluence using above data:

527.564 412.130 412.130

Area of streams before confluence:

152.675 6.500 6.500

Effective area values after confluence:

161.122 165.675 165.675

Results of confluence:

Total flow rate = 527.564 (CFS)

Time of concentration = 11.559 min.

Effective stream area after confluence = 161.122 (Ac.)

Stream Area average Pervious fraction (Ap) = 0.829

Stream Area average soil loss rate (Fm) = 0.167 (In/Hr)

Study area (this main stream) = 165.68 (Ac.)

End of computations, Total Study Area = 191.00 (Ac.)

The following figures may

be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction (Ap) = 0.839

Area averaged SCS curve number = 70.9

LINE 'P1'

San Bernardino County Rational Hydrology Program

(Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
Rational Hydrology Study Date: 01/06/05FONTANA / LINE P1 HYDROLOGY
100 YEAR STORM
JN 04339

Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
 10 Year storm 1 hour rainfall = 0.930 (In.)
 100 Year storm 1 hour rainfall = 1.350 (In.)
 Computed rainfall intensity:
 Storm year = 100.00 1 hour rainfall = 1.350 (In.)
 Slope used for rainfall intensity curve b = 0.6000
 Soil antecedent moisture condition (AMC) = 3

+++++
 Process from Point/Station 400.000 to Point/Station 401.000
 **** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.140 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1850.000 (Ft.)
 Bottom (of initial area) elevation = 1300.000 (Ft.)
 Difference in elevation = 550.000 (Ft.)
 Slope = 0.55000 s(%) = 55.00
 $TC = k(0.525) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 9.377 min.
 Rainfall intensity = 4.111 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.869
 Subarea runoff = 21.445 (CFS)
 Total initial stream area = 6.000 (Ac.)
 Pervious area fraction = 1.000
 Initial area Fm value = 0.140 (In/Hr)

+++++
 Process from Point/Station 401.000 to Point/Station 402.000
 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 38.422 (CFS)
 Depth of flow = 0.659 (Ft.), Average velocity = 10.099 (Ft/s)

***** Irregular Channel Data *****

Information entered for subchannel number 1 :

Point number	'X' coordinate	'Y' coordinate
1	0.00	20.00
2	150.00	0.00
3	350.00	20.00

Manning's 'N' friction factor = 0.035

Sub-Channel flow = 38.422(CFS)

'	'	flow top width = 11.540(Ft.)
'	'	velocity= 10.099(Ft/s)
'	'	area = 3.805(Sq.Ft)
'	'	Froude number = 3.099

Upstream point elevation = 1300.000(Ft.)
 Downstream point elevation = 1087.000(Ft.)
 Flow length = 850.000(Ft.)
 Travel time = 1.40 min.
 Time of concentration = 10.78 min.
 Depth of flow = 0.659(Ft.)
 Average velocity = 10.099(Ft/s)
 Total irregular channel flow = 38.422(CFS)
 Irregular channel normal depth above invert elev. = 0.659(Ft.)
 Average velocity of channel(s) = 10.099(Ft/s)

Sub-Channel No. 1 Critical depth = 1.039(Ft.)

'	'	'	Critical flow top width = 18.184(Ft.)
'	'	'	Critical flow velocity= 4.067(Ft/s)
'	'	'	Critical flow area = 9.447(Sq.Ft)

Adding area flow to channel
 UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(A_p) = 1.0000 Max loss rate(F_m) = 0.140(In/Hr)
 Rainfall intensity = 3.781(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.867$
 Subarea runoff = 29.352(CFS) for 9.500(Ac.)
 Total runoff = 50.796(CFS)
 Effective area this stream = 15.50(Ac.)
 Total Study Area (Main Stream No. 1) = 15.50(Ac.)
 Area averaged F_m value = 0.140(In/Hr)

+++++
 Process from Point/Station 402.000 to Point/Station 75.000
 *** PIPEFLOW TRAVEL TIME (User specified size) ***

Upstream point/station elevation = 1080.000(Ft.)
 Downstream point/station elevation = 1077.000(Ft.)
 Pipe length = 550.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 50.796(CFS)
 Given pipe size = 36.00(In.)
 Calculated individual pipe flow = 50.796(CFS)
 Normal flow depth in pipe = 30.66(In.)

Flow top width inside pipe = 25.60 (In.)
 Critical Depth = 27.82 (In.)
 Pipe flow velocity = 7.92 (Ft/s)
 Travel time through pipe = 1.16 min.
 Time of concentration (TC) = 11.94 min.

+++++
 Process from Point/Station 75.000 to Point/Station 75.000
 **** CONFLUENCE OF MAIN STREAMS ****

The following data inside Main Stream is listed:
 In Main Stream number: 1
 Effective stream flow area = 15.500 (Ac.)
 Total study area this main stream = 15.500 (Ac.)
 Runoff from this stream = 50.796 (CFS)
 Time of concentration = 11.94 min.
 Rainfall intensity = 3.557 (In/Hr)
 Area averaged loss rate (Fm) = 0.1400 (In/Hr)
 Area averaged Pervious ratio (Ap) = 1.0000
 Program is now starting with Main Stream No. 2

+++++
 Process from Point/Station 403.000 to Point/Station 404.000
 **** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.140 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1600.000 (Ft.)
 Bottom (of initial area) elevation = 1140.000 (Ft.)
 Difference in elevation = 460.000 (Ft.)
 Slope = 0.46000 s(%) = 46.00
 $TC = k(0.525) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 9.719 min.
 Rainfall intensity = 4.024 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.869
 Subarea runoff = 19.226 (CFS)
 Total initial stream area = 5.500 (Ac.)
 Pervious area fraction = 1.000
 Initial area Fm value = 0.140 (In/Hr)

+++++
 Process from Point/Station 404.000 to Point/Station 405.000
 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 34.956 (CFS)
 Depth of flow = 0.698 (Ft.), Average velocity = 7.175 (Ft/s)
 ***** Irregular Channel Data *****

 Information entered for subchannel number 1 :
 Point number 'X' coordinate 'Y' coordinate

1	0.00	20.00
2	200.00	0.00
3	400.00	20.00

Manning's 'N' friction factor = 0.035

Sub-Channel flow = 34.956(CFS)
 ' ' flow top width = 13.959(Ft.)
 ' ' velocity= 7.175(Ft/s)
 ' ' area = 4.872(Sq.Ft)
 ' ' Froude number = 2.141

Upstream point elevation = 1140.000(Ft.)
 Downstream point elevation = 1085.000(Ft.)
 Flow length = 470.000(Ft.)
 Travel time = 1.09 min.
 Time of concentration = 10.81 min.
 Depth of flow = 0.698(Ft.)
 Average velocity = 7.175(Ft/s)
 Total irregular channel flow = 34.956(CFS)
 Irregular channel normal depth above invert elev. = 0.698(Ft.)
 Average velocity of channel(s) = 7.175(Ft/s)

Sub-Channel No. 1 Critical depth = 0.945(Ft.)
 ' ' ' Critical flow top width = 18.906(Ft.)
 ' ' ' Critical flow velocity= 3.912(Ft/s)
 ' ' ' Critical flow area = 8.936(Sq.Ft)

Adding area flow to channel
 UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Previous ratio(A_p) = 1.0000 Max loss rate(F_m)= 0.140(In/Hr)
 Rainfall intensity = 3.775(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.867$
 Subarea runoff = 28.211(CFS) for 9.000(Ac.)
 Total runoff = 47.437(CFS)
 Effective area this stream = 14.50(Ac.)
 Total Study Area (Main Stream No. 2) = 14.50(Ac.)
 Area averaged F_m value = 0.140(In/Hr)

+++++
 Process from Point/Station 405.000 to Point/Station 75.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1078.000(Ft.)
 Downstream point/station elevation = 1077.000(Ft.)
 Pipe length = 150.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 47.437(CFS)
 Given pipe size = 36.00(In.)
 Calculated individual pipe flow = 47.437(CFS)
 Normal flow depth in pipe = 25.99(In.)
 Flow top width inside pipe = 32.26(In.)
 Critical Depth = 26.92(In.)
 Pipe flow velocity = 8.68(Ft/s)
 Travel time through pipe = 0.29 min.

Time of concentration (TC) = 11.10 min.

+++++
Process from Point/Station 75.000 to Point/Station 75.000
**** CONFLUENCE OF MAIN STREAMS ****

The following data inside Main Stream is listed:

In Main Stream number: 2
Effective stream flow area = 14.500 (Ac.)
Total study area this main stream = 14.500 (Ac.)
Runoff from this stream = 47.437 (CFS)
Time of concentration = 11.10 min.
Rainfall intensity = 3.716 (In/Hr)
Area averaged loss rate (Fm) = 0.1400 (In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
Program is now starting with Main Stream No. 3

+++++
Process from Point/Station 406.000 to Point/Station 408.000
**** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220 (In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000 (Ft.)
Top (of initial area) elevation = 1065.000 (Ft.)
Bottom (of initial area) elevation = 1055.000 (Ft.)
Difference in elevation = 10.000 (Ft.)
Slope = 0.01000 s(%) = 1.00
TC = $k(0.389) * [(length^3) / (elevation change)]^{0.2}$
Initial area time of concentration = 15.486 min.
Rainfall intensity = 3.043 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.835
Subarea runoff = 19.053 (CFS)
Total initial stream area = 7.500 (Ac.)
Pervious area fraction = 0.500
Initial area Fm value = 0.220 (In/Hr)

+++++
Process from Point/Station 408.000 to Point/Station 408.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 3 in normal stream number 1
Stream flow area = 7.500 (Ac.)
Runoff from this stream = 19.053 (CFS)
Time of concentration = 15.49 min.
Rainfall intensity = 3.043 (In/Hr)
Area averaged loss rate (Fm) = 0.2200 (In/Hr)
Area averaged Pervious ratio (Ap) = 0.5000

+++++

Process from Point/Station 407.000 to Point/Station 408.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1065.000(Ft.)
 Bottom (of initial area) elevation = 1055.000(Ft.)
 Difference in elevation = 10.000(Ft.)
 Slope = 0.01000 s(%)= 1.00
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 15.486 min.
 Rainfall intensity = 3.043 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.835
 Subarea runoff = 15.243(CFS)
 Total initial stream area = 6.000(Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
 Process from Point/Station 408.000 to Point/Station 408.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 3 in normal stream number 2
 Stream flow area = 6.000(Ac.)
 Runoff from this stream = 15.243(CFS)
 Time of concentration = 15.49 min.
 Rainfall intensity = 3.043 (In/Hr)
 Area averaged loss rate (Fm) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	19.053	15.49	3.043
2	15.243	15.49	3.043
$Q_{max}(1) =$			
	1.000 * 1.000 *	19.053) +	
	1.000 * 1.000 *	15.243) + =	34.296
$Q_{max}(2) =$			
	1.000 * 1.000 *	19.053) +	
	1.000 * 1.000 *	15.243) + =	34.296

Total of 2 streams to confluence:
 Flow rates before confluence point:
 19.053 15.243
 Maximum flow rates at confluence using above data:
 34.296 34.296
 Area of streams before confluence:
 7.500 6.000
 Effective area values after confluence:

13.500 13.500
 Results of confluence:
 Total flow rate = 34.296(CFS)
 Time of concentration = 15.486 min.
 Effective stream area after confluence = 13.500(Ac.)
 Stream Area average Pervious fraction(A_p) = 0.500
 Stream Area average soil loss rate(F_m) = 0.220(In/Hr)
 Study area (this main stream) = 13.50(Ac.)

+++++
 Process from Point/Station 408.000 to Point/Station 408.000
 **** CONFLUENCE OF MAIN STREAMS ****

The following data inside Main Stream is listed:

In Main Stream number: 3
 Effective stream flow area = 13.500(Ac.)
 Total study area this main stream = 13.500(Ac.)
 Runoff from this stream = 34.296(CFS)
 Time of concentration = 15.49 min.
 Rainfall intensity = 3.043(In/Hr)
 Area averaged loss rate (F_m) = 0.2200(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	50.796	11.94	3.557
2	47.437	11.10	3.716
3	34.296	15.49	3.043
$Q_{max}(1)$ =			
1.000 *	1.000 *	50.796) +	
0.956 *	1.000 *	47.437) +	
1.182 *	0.771 *	34.296) + =	127.378
$Q_{max}(2)$ =			
1.047 *	0.930 *	50.796) +	
1.000 *	1.000 *	47.437) +	
1.239 *	0.717 *	34.296) + =	127.302
$Q_{max}(3)$ =			
0.849 *	1.000 *	50.796) +	
0.812 *	1.000 *	47.437) +	
1.000 *	1.000 *	34.296) + =	115.951

Total of 3 main streams to confluence:

Flow rates before confluence point:

51.796 48.437 35.296

Maximum flow rates at confluence using above data:

127.378 127.302 115.951

Effective Area of streams before confluence:

15.500 14.500 13.500

Effective area values after confluence:

40.406 38.586 43.500

Results of confluence:

Total flow rate = 127.378(CFS)

Time of concentration = 11.937 min.

Effective stream area after confluence = 40.406(Ac.)

Stream Area average Pervious fraction(A_p) = 0.845

Stream Area average soil loss rate(Fm) = 0.165(In/Hr)
 Stream effective area = 43.50(Ac.)

+++++
 Process from Point/Station 75.000 to Point/Station 76.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1075.000(Ft.)
 Downstream point/station elevation = 1047.000(Ft.)
 Pipe length = 550.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 127.378(CFS)
 Given pipe size = 42.00(In.)
 Calculated individual pipe flow = 127.378(CFS)
 Normal flow depth in pipe = 22.50(In.)
 Flow top width inside pipe = 41.89(In.)
 Critical Depth = 39.54(In.)
 Pipe flow velocity = 24.27(Ft/s)
 Travel time through pipe = 0.38 min.
 Time of concentration (TC) = 12.31 min.

+++++
 Process from Point/Station 76.000 to Point/Station 80.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1047.000(Ft.)
 Downstream point/station elevation = 1041.300(Ft.)
 Pipe length = 1000.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 127.378(CFS)
 Given pipe size = 54.00(In.)
 Calculated individual pipe flow = 127.378(CFS)
 Normal flow depth in pipe = 38.53(In.)
 Flow top width inside pipe = 48.83(In.)
 Critical Depth = 39.87(In.)
 Pipe flow velocity = 10.49(Ft/s)
 Travel time through pipe = 1.59 min.
 Time of concentration (TC) = 13.90 min.

+++++
 Process from Point/Station 80.000 to Point/Station 80.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 40.406(Ac.)
 Runoff from this stream = 127.378(CFS)
 Time of concentration = 13.90 min.
 Rainfall intensity = 3.246(In/Hr)
 Area averaged loss rate (Fm) = 0.1648(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.8448

+++++
 Process from Point/Station 80.000 to Point/Station 80.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil(AMC 2) = 98.02
 Adjusted SCS curve number for AMC 3 = 99.60

Pervious ratio(Ap) = 0.8560 Max loss rate(Fm) = 0.007 (In/Hr)
 Rainfall intensity = 3.337 (In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 13.28 min. Rain intensity = 3.34 (In/Hr)
 Total area this stream = 121.62 (Ac.)
 Total Study Area (Main Stream No. 1) = 135.12 (Ac.)
 Total runoff = 362.94 (CFS)

+++++
 Process from Point/Station 80.000 to Point/Station 80.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 121.620 (Ac.)
 Runoff from this stream = 362.940 (CFS)
 Time of concentration = 13.28 min.
 Rainfall intensity = 3.337 (In/Hr)
 Area averaged loss rate (Fm) = 0.0068 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.8560
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	127.378	13.90	3.246
2	362.940	13.28	3.337
$Q_{max}(1)$ =			
	1.000 * 1.000 * 127.378) +		
	0.973 * 1.000 * 362.940) + =		480.453
$Q_{max}(2)$ =			
	1.029 * 0.955 * 127.378) +		
	1.000 * 1.000 * 362.940) + =		488.185

Total of 2 streams to confluence:
 Flow rates before confluence point:
 127.378 362.940
 Maximum flow rates at confluence using above data:
 480.453 488.185
 Area of streams before confluence:
 40.406 121.620
 Effective area values after confluence:
 162.026 160.216
 Results of confluence:
 Total flow rate = 488.185 (CFS)
 Time of concentration = 13.280 min.
 Effective stream area after confluence = 160.216 (Ac.)
 Stream Area average Pervious fraction(Ap) = 0.853
 Stream Area average soil loss rate(Fm) = 0.046 (In/Hr)
 Study area (this main stream) = 162.03 (Ac.)

+++++
 Process from Point/Station 80.000 to Point/Station 88.000
 *** PIPEFLOW TRAVEL TIME (User specified size) ***

Upstream point/station elevation = 1037.200 (Ft.)
 Downstream point/station elevation = 1031.600 (Ft.)
 Pipe length = 1450.00 (Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 488.185 (CFS)

Given pipe size = 90.00 (In.)
 Calculated individual pipe flow = 488.185 (CFS)
 Normal flow depth in pipe = 75.75 (In.)
 Flow top width inside pipe = 65.71 (In.)
 Critical Depth = 68.63 (In.)
 Pipe flow velocity = 12.30 (Ft/s)
 Travel time through pipe = 1.97 min.
 Time of concentration (TC) = 15.25 min.

++++++
 Process from Point/Station 88.000 to Point/Station 88.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 160.216 (Ac.)
 Runoff from this stream = 488.185 (CFS)
 Time of concentration = 15.25 min.
 Rainfall intensity = 3.071 (In/Hr)
 Area averaged loss rate (Fm) = 0.0462 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.8532

++++++
 Process from Point/Station 88.000 to Point/Station 88.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil (AMC 2) = 97.90
 Adjusted SCS curve number for AMC 3 = 99.58
 Pervious ratio (Ap) = 0.8290 Max loss rate (Fm) = 0.007 (In/Hr)
 Rainfall intensity = 3.626 (In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 11.56 min. Rain intensity = 3.63 (In/Hr)
 Total area this stream = 131.12 (Ac.)
 Total Study Area (Main Stream No. 1) = 266.24 (Ac.)
 Total runoff = 527.56 (CFS)

++++++
 Process from Point/Station 88.000 to Point/Station 88.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 131.120 (Ac.)
 Runoff from this stream = 527.560 (CFS)
 Time of concentration = 11.56 min.
 Rainfall intensity = 3.626 (In/Hr)
 Area averaged loss rate (Fm) = 0.0069 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.8290
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	488.185	15.25	3.071
2	527.560	11.56	3.626
Qmax(1) = 1.000 * 1.000 * 488.185) +			

$0.847 * 1.000 * 527.560) + = 934.886$
 $Q_{max}(2) =$
 $1.183 * 0.758 * 488.185) +$
 $1.000 * 1.000 * 527.560) + = 965.614$

Total of 2 streams to confluence:

Flow rates before confluence point:

488.185 527.560

Maximum flow rates at confluence using above data:

934.886 965.614

Area of streams before confluence:

160.216 131.120

Effective area values after confluence:

291.336 252.607

Results of confluence:

Total flow rate = 965.614 (CFS)

Time of concentration = 11.560 min.

Effective stream area after confluence = 252.607 (Ac.)

Stream Area average Pervious fraction (Ap) = 0.842

Stream Area average soil loss rate (Fm) = 0.029 (In/Hr)

Study area (this main stream) = 291.34 (Ac.)

+++++
 Process from Point/Station 88.000 to Point/Station 89.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1031.100 (Ft.)

Downstream point/station elevation = 1028.800 (Ft.)

Pipe length = 550.00 (Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 965.614 (CFS)

Given pipe size = 96.00 (In.)

NOTE: Normal flow is pressure flow in user selected pipe size.

The approximate hydraulic grade line above the pipe invert is
 12.458 (Ft.) at the headworks or inlet of the pipe(s)

Pipe friction loss = 6.163 (Ft.)

Minor friction loss = 8.596 (Ft.) K-factor = 1.50

Pipe flow velocity = 19.21 (Ft/s)

Travel time through pipe = 0.48 min.

Time of concentration (TC) = 12.04 min.

+++++
 Process from Point/Station 89.000 to Point/Station 89.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1

Stream flow area = 252.607 (Ac.)

Runoff from this stream = 965.614 (CFS)

Time of concentration = 12.04 min.

Rainfall intensity = 3.539 (In/Hr)

Area averaged loss rate (Fm) = 0.0285 (In/Hr)

Area averaged Pervious ratio (Ap) = 0.8423

+++++
 Process from Point/Station 513.000 to Point/Station 530.000
 **** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.140 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1770.000 (Ft.)
 Bottom (of initial area) elevation = 1380.000 (Ft.)
 Difference in elevation = 390.000 (Ft.)
 Slope = 0.39000 s(%) = 39.00
 $TC = k(0.525) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 10.045 min.
 Rainfall intensity = 3.945 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.868
 Subarea runoff = 20.547 (CFS)
 Total initial stream area = 6.000 (Ac.)
 Pervious area fraction = 1.000
 Initial area Fm value = 0.140 (In/Hr)

+++++
 Process from Point/Station 530.000 to Point/Station 531.000
 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 32.533 (CFS)
 Depth of flow = 0.482 (Ft.), Average velocity = 9.354 (Ft/s)
 ***** Irregular Channel Data *****

Information entered for subchannel number 1 :
 Point number 'X' coordinate 'Y' coordinate
 1 0.00 10.00
 2 150.00 0.00
 3 300.00 10.00
 Manning's 'N' friction factor = 0.035

Sub-Channel flow = 32.533 (CFS)
 ' ' flow top width = 14.446 (Ft.)
 ' ' velocity = 9.354 (Ft/s)
 ' ' area = 3.478 (Sq.Ft)
 ' ' Froude number = 3.359

Upstream point elevation = 1380.000 (Ft.)
 Downstream point elevation = 1120.000 (Ft.)
 Flow length = 800.000 (Ft.)
 Travel time = 1.43 min.
 Time of concentration = 11.47 min.
 Depth of flow = 0.482 (Ft.)
 Average velocity = 9.354 (Ft/s)
 Total irregular channel flow = 32.533 (CFS)
 Irregular channel normal depth above invert elev. = 0.482 (Ft.)
 Average velocity of channel(s) = 9.354 (Ft/s)

Sub-Channel No. 1 Critical depth = 0.781 (Ft.)
 ' ' ' Critical flow top width = 23.438 (Ft.)
 ' ' ' Critical flow velocity = 3.554 (Ft/s)
 ' ' ' Critical flow area = 9.155 (Sq.Ft)

Adding area flow to channel
 UNDEVELOPED (poor cover) subarea

Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(A_p) = 1.0000 Max loss rate(F_m) = 0.140 (In/Hr)
 Rainfall intensity = 3.643 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.865$
 Subarea runoff = 20.439 (CFS) for 7.000 (Ac.)
 Total runoff = 40.987 (CFS)
 Effective area this stream = 13.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 279.24 (Ac.)
 Area averaged F_m value = 0.140 (In/Hr)

+++++
 Process from Point/Station 531.000 to Point/Station 532.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1120.000 (Ft.)
 End of street segment elevation = 1056.000 (Ft.)
 Length of street segment = 1800.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/Hz) = 0.020
 Slope from grade break to crown (v/Hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 66.209 (CFS)
 Depth of flow = 0.528 (Ft.), Average velocity = 7.011 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 7.01 (Ft/s)
 Travel time = 4.28 min. TC = 15.75 min.
 Adding area flow to street
 UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(A_p) = 1.0000 Max loss rate(F_m) = 0.140 (In/Hr)
 Rainfall intensity = 3.012 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.858$
 Subarea runoff = 33.974 (CFS) for 16.000 (Ac.)
 Total runoff = 74.961 (CFS)
 Effective area this stream = 29.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 295.24 (Ac.)
 Area averaged F_m value = 0.140 (In/Hr)

Street flow at end of street = 74.961(CFS)
 Half street flow at end of street = 37.480(CFS)
 Depth of flow = 0.546(Ft.), Average velocity = 7.365(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 532.000 to Point/Station 532.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 29.000(Ac.)
 Runoff from this stream = 74.961(CFS)
 Time of concentration = 15.75 min.
 Rainfall intensity = 3.012(In/Hr)
 Area averaged loss rate (Fm) = 0.1400(In/Hr)
 Area averaged Pervious ratio (Ap) = 1.0000

+++++
 Process from Point/Station 533.000 to Point/Station 534.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.044(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1064.100(Ft.)
 Bottom (of initial area) elevation = 1059.100(Ft.)
 Difference in elevation = 5.000(Ft.)
 Slope = 0.00500 s(%)= 0.50
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 13.902 min.
 Rainfall intensity = 3.246(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.888
 Subarea runoff = 18.733(CFS)
 Total initial stream area = 6.500(Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.044(In/Hr)

+++++
 Process from Point/Station 534.000 to Point/Station 535.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1059.300(Ft.)
 End of street segment elevation = 1056.200(Ft.)
 Length of street segment = 330.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street

Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 26.658(CFS)
 Depth of flow = 0.495(Ft.), Average velocity = 3.270(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 3.27(Ft/s)
 Travel time = 1.68 min. TC = 15.58 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044(In/Hr)
 Rainfall intensity = 3.031(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method)($Q=KCIA$) is $C = 0.887$
 Subarea runoff = 13.529(CFS) for 5.500(Ac.)
 Total runoff = 32.262(CFS)
 Effective area this stream = 12.00(Ac.)
 Total Study Area (Main Stream No. 1) = 307.24(Ac.)
 Area averaged F_m value = 0.044(In/Hr)
 Street flow at end of street = 32.262(CFS)
 Half street flow at end of street = 16.131(CFS)
 Depth of flow = 0.520(Ft.), Average velocity = 3.528(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 535.000 to Point/Station 535.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 12.000(Ac.)
 Runoff from this stream = 32.262(CFS)
 Time of concentration = 15.58 min.
 Rainfall intensity = 3.031(In/Hr)
 Area averaged loss rate (F_m) = 0.0440(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.1000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	965.614	12.04	3.539
2	74.961	15.75	3.012
3	32.262	15.58	3.031
$Q_{max}(1) = 1.000 * 1.000 * 965.614) + 1.184 * 0.764 * 74.961) +$			

1.170 * 0.772 * 32.262) + = 1062.579
 Qmax(2) =
 0.850 * 1.000 * 965.614) +
 1.000 * 1.000 * 74.961) +
 0.994 * 1.000 * 32.262) + = 927.634
 Qmax(3) =
 0.855 * 1.000 * 965.614) +
 1.007 * 0.989 * 74.961) +
 1.000 * 1.000 * 32.262) + = 932.819

Total of 3 streams to confluence:

Flow rates before confluence point:

965.614 74.961 32.262

Maximum flow rates at confluence using above data:

1062.579 927.634 932.819

Area of streams before confluence:

252.607 29.000 12.000

Effective area values after confluence:

284.041 293.607 293.302

Results of confluence:

Total flow rate = 1062.579(CFS)

Time of concentration = 12.037 min.

Effective stream area after confluence = 284.041(Ac.)

Stream Area average Pervious fraction(Ap) = 0.828

Stream Area average soil loss rate(Fm) = 0.040(In/Hr)

Study area (this main stream) = 293.61(Ac.)

End of computations, Total Study Area = 337.24 (Ac.)

The following figures may

be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area

effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 0.830

Area averaged SCS curve number = 91.3

LINE "SIERRA AVE

San Bernardino County Rational Hydrology Program

(Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
Rational Hydrology Study Date: 01/06/05FONTANA / LINE SIERRA AVENUE HYDROLOGY
100 YEARV STORM
JN 04339

Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
10 Year storm 1 hour rainfall = 0.930 (In.)

100 Year storm 1 hour rainfall = 1.350 (In.)

Computed rainfall intensity:

Storm year = 100.00 1 hour rainfall = 1.350 (In.)

Slope used for rainfall intensity curve b = 0.6000

Soil antecedent moisture condition (AMC) = 3

+++++
Process from Point/Station 200.000 to Point/Station 201.000
**** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type

Decimal fraction soil group A = 1.000

Decimal fraction soil group B = 0.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil (AMC 2) = 32.00

Adjusted SCS curve number for AMC 3 = 52.00

Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.079 (In/Hr)

Initial subarea data:

Initial area flow distance = 1000.000 (Ft.)

Top (of initial area) elevation = 1103.000 (Ft.)

Bottom (of initial area) elevation = 1098.000 (Ft.)

Difference in elevation = 5.000 (Ft.)

Slope = 0.00500 s(%) = 0.50

TC = $k(0.304) * [(\text{length}^3) / (\text{elevation change})]^{0.2}$

Initial area time of concentration = 13.902 min.

Initial area time of concentration = 13.902 min.

Rainfall intensity = 3.246 (In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area (Q=KCIA) is C = 0.878

Subarea runoff = 15.680 (CFS)

Total initial stream area = 5.500 (Ac.)

Pervious area fraction = 0.100

Initial area Fm value = 0.079 (In/Hr)

+++++
Process from Point/Station 201.000 to Point/Station 202.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****Top of street segment elevation = 1098.000 (Ft.)
End of street segment elevation = 1091.600 (Ft.)

Length of street segment = 670.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 29.222(CFS)
 Depth of flow = 0.506(Ft.), Average velocity = 3.409(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 3.41(Ft/s)
 Travel time = 3.28 min. TC = 17.18 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Previous ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.079(In/Hr)
 Rainfall intensity = 2.859(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.875$
 Subarea runoff = 21.859(CFS) for 9.500(Ac.)
 Total runoff = 37.539(CFS)
 Effective area this stream = 15.00(Ac.)
 Total Study Area (Main Stream No. 1) = 15.00(Ac.)
 Area averaged F_m value = 0.079(In/Hr)
 Street flow at end of street = 37.539(CFS)
 Half street flow at end of street = 18.770(CFS)
 Depth of flow = 0.541(Ft.), Average velocity = 3.766(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 202.000 to Point/Station 60.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1084.600(Ft.)
 Downstream point/station elevation = 1078.400(Ft.)
 Pipe length = 555.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 37.539(CFS)
 Given pipe size = 42.00(In.)
 Calculated individual pipe flow = 37.539(CFS)
 Normal flow depth in pipe = 17.23(In.)
 Flow top width inside pipe = 41.32(In.)
 Critical Depth = 22.80(In.)
 Pipe flow velocity = 10.09(Ft/s)
 Travel time through pipe = 0.92 min.
 Time of concentration (TC) = 18.09 min.

+++++
Process from Point/Station 60.000 to Point/Station 60.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 15.000(Ac.)
 Runoff from this stream = 37.539(CFS)
 Time of concentration = 18.09 min.
 Rainfall intensity = 2.771(In/Hr)
 Area averaged loss rate (Fm) = 0.0785(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000

+++++
Process from Point/Station 203.000 to Point/Station 204.000
**** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1103.000(Ft.)
 Bottom (of initial area) elevation = 1096.000(Ft.)
 Difference in elevation = 7.000(Ft.)
 Slope = 0.00700 s(%)= 0.70
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 12.997 min.
 Rainfall intensity = 3.380(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.879
 Subarea runoff = 19.313(CFS)
 Total initial stream area = 6.500(Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.079(In/Hr)

+++++
Process from Point/Station 204.000 to Point/Station 205.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1096.000(Ft.)
 End of street segment elevation = 1090.500(Ft.)
 Length of street segment = 675.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150

Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 31.942(CFS)
 Depth of flow = 0.529(Ft.), Average velocity = 3.367(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 3.37(Ft/s)
 Travel time = 3.34 min. TC = 16.34 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.079(In/Hr)
 Rainfall intensity = 2.946(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.876$
 Subarea runoff = 19.403(CFS) for 8.500(Ac.)
 Total runoff = 38.716(CFS)
 Effective area this stream = 15.00(Ac.)
 Total Study Area (Main Stream No. 1) = 30.00(Ac.)
 Area averaged Fm value = 0.079(In/Hr)
 Street flow at end of street = 38.716(CFS)
 Half street flow at end of street = 19.358(CFS)
 Depth of flow = 0.558(Ft.), Average velocity = 3.634(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 205.000 to Point/Station 205.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 15.000(Ac.)
 Runoff from this stream = 38.716(CFS)
 Time of concentration = 16.34 min.
 Rainfall intensity = 2.946(In/Hr)
 Area averaged loss rate (Fm) = 0.0785(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	37.539	18.09	2.771
2	38.716	16.34	2.946
$Q_{max}(1) =$			
	1.000 *	1.000 *	37.539) +
	0.939 *	1.000 *	38.716) + = 73.894
$Q_{max}(2) =$			
	1.065 *	0.903 *	37.539) +
	1.000 *	1.000 *	38.716) + = 74.817

Total of 2 streams to confluence:
 Flow rates before confluence point:

37.539 38.716
 Maximum flow rates at confluence using above data:
 73.894 74.817
 Area of streams before confluence:
 15.000 15.000
 Effective area values after confluence:
 30.000 28.545
 Results of confluence:
 Total flow rate = 74.817 (CFS)
 Time of concentration = 16.339 min.
 Effective stream area after confluence = 28.545 (Ac.)
 Stream Area average Pervious fraction (Ap) = 0.100
 Stream Area average soil loss rate (Fm) = 0.079 (In/Hr)
 Study area (this main stream) = 30.00 (Ac.)

+++++
 Process from Point/Station 60.000 to Point/Station 61.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1078.400 (Ft.)
 Downstream point/station elevation = 1076.700 (Ft.)
 Pipe length = 500.00 (Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 74.817 (CFS)
 Given pipe size = 42.00 (In.)
 NOTE: Normal flow is pressure flow in user selected pipe size.
 The approximate hydraulic grade line above the pipe invert is
 2.473 (Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 2.764 (Ft.)
 Minor friction loss = 1.408 (Ft.) K-factor = 1.50
 Pipe flow velocity = 7.78 (Ft/s)
 Travel time through pipe = 1.07 min.
 Time of concentration (TC) = 17.41 min.

+++++
 Process from Point/Station 61.000 to Point/Station 61.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 28.545 (Ac.)
 Runoff from this stream = 74.817 (CFS)
 Time of concentration = 17.41 min.
 Rainfall intensity = 2.836 (In/Hr)
 Area averaged loss rate (Fm) = 0.0785 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000

+++++
 Process from Point/Station 206.000 to Point/Station 207.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.079 (In/Hr)
 Initial subarea data:

Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1103.000(Ft.)
 Bottom (of initial area) elevation = 1097.000(Ft.)
 Difference in elevation = 6.000(Ft.)
 Slope = 0.00600 s(%) = 0.60
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 13.404 min.
 Rainfall intensity = 3.318(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.879
 Subarea runoff = 17.493(CFS)
 Total initial stream area = 6.000(Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.079(In/Hr)

+++++
 Process from Point/Station 207.000 to Point/Station 208.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1097.000(Ft.)
 End of street segment elevation = 1089.300(Ft.)
 Length of street segment = 775.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 32.071(CFS)
 Depth of flow = 0.515(Ft.), Average velocity = 3.580(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 3.58(Ft/s)
 Travel time = 3.61 min. TC = 17.01 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.079(In/Hr)
 Rainfall intensity = 2.876(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) (Q=KCIA) is C = 0.875
 Subarea runoff = 22.788(CFS) for 10.000(Ac.)
 Total runoff = 40.281(CFS)
 Effective area this stream = 16.00(Ac.)
 Total Study Area (Main Stream No. 1) = 46.00(Ac.)
 Area averaged Fm value = 0.079(In/Hr)
 Street flow at end of street = 40.281(CFS)
 Half street flow at end of street = 20.141(CFS)

Depth of flow = 0.548(Ft.), Average velocity = 3.919(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown)= 20.000(Ft.)

+++++
 Process from Point/Station 208.000 to Point/Station 208.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 16.000(Ac.)
 Runoff from this stream = 40.281(CFS)
 Time of concentration = 17.01 min.
 Rainfall intensity = 2.876(In/Hr)
 Area averaged loss rate (Fm) = 0.0785(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	74.817	17.41	2.836
2	40.281	17.01	2.876
Qmax(1) =	1.000 * 0.986 *	1.000 * 1.000 *	74.817) + 40.281) + = 114.527
Qmax(2) =	1.014 * 1.000 *	0.977 * 1.000 *	74.817) + 40.281) + = 114.438

Total of 2 streams to confluence:

Flow rates before confluence point:

74.817 40.281

Maximum flow rates at confluence using above data:

114.527 114.438

Area of streams before confluence:

28.545 16.000

Effective area values after confluence:

44.545 43.893

Results of confluence:

Total flow rate = 114.527(CFS)

Time of concentration = 17.411 min.

Effective stream area after confluence = 44.545(Ac.)

Stream Area average Pervious fraction(Ap) = 0.100

Stream Area average soil loss rate(Fm) = 0.079(In/Hr)

Study area (this main stream) = 44.55(Ac.)

+++++
 Process from Point/Station 61.000 to Point/Station 62.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1076.700(Ft.)
 Downstream point/station elevation = 1065.000(Ft.)
 Pipe length = 1320.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 114.527(CFS)
 Given pipe size = 48.00(In.)
 Calculated individual pipe flow = 114.527(CFS)
 Normal flow depth in pipe = 33.89(In.)
 Flow top width inside pipe = 43.73(In.)

Critical Depth = 38.74 (In.)
 Pipe flow velocity = 12.07 (Ft/s)
 Travel time through pipe = 1.82 min.
 Time of concentration (TC) = 19.23 min.

+++++
 Process from Point/Station 62.000 to Point/Station 62.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 44.545 (Ac.)
 Runoff from this stream = 114.527 (CFS)
 Time of concentration = 19.23 min.
 Rainfall intensity = 2.672 (In/Hr)
 Area averaged loss rate (Fm) = 0.0785 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000

+++++
 Process from Point/Station 209.000 to Point/Station 210.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.079 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1090.500 (Ft.)
 Bottom (of initial area) elevation = 1084.500 (Ft.)
 Difference in elevation = 6.000 (Ft.)
 Slope = 0.00600 s(%) = 0.60
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 13.404 min.
 Rainfall intensity = 3.318 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.879
 Subarea runoff = 16.036 (CFS)
 Total initial stream area = 5.500 (Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.079 (In/Hr)

+++++
 Process from Point/Station 210.000 to Point/Station 211.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1084.500 (Ft.)
 End of street segment elevation = 1076.500 (Ft.)
 Length of street segment = 875.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)

Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 32.071(CFS)
 Depth of flow = 0.521(Ft.), Average velocity = 3.491(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 3.49(Ft/s)
 Travel time = 4.18 min. TC = 17.58 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044(In/Hr)
 Rainfall intensity = 2.820(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.882$
 Subarea runoff = 25.012(CFS) for 11.000(Ac.)
 Total runoff = 41.047(CFS)
 Effective area this stream = 16.50(Ac.)
 Total Study Area (Main Stream No. 1) = 62.50(Ac.)
 Area averaged F_m value = 0.056(In/Hr)
 Street flow at end of street = 41.047(CFS)
 Half street flow at end of street = 20.524(CFS)
 Depth of flow = 0.558(Ft.), Average velocity = 3.850(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 211.000 to Point/Station 211.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 16.500(Ac.)
 Runoff from this stream = 41.047(CFS)
 Time of concentration = 17.58 min.
 Rainfall intensity = 2.820(In/Hr)
 Area averaged loss rate (F_m) = 0.0555(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.1000

++++++
 Process from Point/Station 212.000 to Point/Station 213.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00

Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1092.600 (Ft.)
 Bottom (of initial area) elevation = 1086.000 (Ft.)
 Difference in elevation = 6.600 (Ft.)
 Slope = 0.00660 $s(\%)$ = 0.66
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 13.151 min.
 Rainfall intensity = 3.356 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area ($Q=KCIA$) is $C = 0.879$
 Subarea runoff = 14.750 (CFS)
 Total initial stream area = 5.000 (Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.079 (In/Hr)

++++++
 Process from Point/Station 213.000 to Point/Station 214.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1086.000 (Ft.)
 End of street segment elevation = 1076.500 (Ft.)
 Length of street segment = 1000.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 29.499 (CFS)
 Depth of flow = 0.507 (Ft.), Average velocity = 3.416 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 3.42 (Ft/s)
 Travel time = 4.88 min. $TC = 18.03$ min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079 (In/Hr)
 Rainfall intensity = 2.777 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.875$
 Subarea runoff = 21.685 (CFS) for 10.000 (Ac.)
 Total runoff = 36.434 (CFS)
 Effective area this stream = 15.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 77.50 (Ac.)
 Area averaged Fm value = 0.079 (In/Hr)

Street flow at end of street = 36.434(CFS)
 Half street flow at end of street = 18.217(CFS)
 Depth of flow = 0.537(Ft.), Average velocity = 3.715(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 214.000 to Point/Station 214.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 15.000(Ac.)
 Runoff from this stream = 36.434(CFS)
 Time of concentration = 18.03 min.
 Rainfall intensity = 2.777(In/Hr)
 Area averaged loss rate (Fm) = 0.0785(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	114.527	19.23	2.672
2	41.047	17.58	2.820
3	36.434	18.03	2.777
Qmax(1) =	1.000 * 0.947 * 0.961 *	1.000 * 1.000 * 1.000 *	114.527) + 41.047) + 36.434) + = 188.387
Qmax(2) =	1.057 * 1.000 * 1.016 *	0.914 * 1.000 * 0.975 *	114.527) + 41.047) + 36.434) + = 187.795
Qmax(3) =	1.041 * 0.985 * 1.000 *	0.937 * 1.000 * 1.000 *	114.527) + 41.047) + 36.434) + = 188.588

Total of 3 streams to confluence:

Flow rates before confluence point:

114.527 41.047 36.434

Maximum flow rates at confluence using above data:

188.387 187.795 188.588

Area of streams before confluence:

44.545 16.500 15.000

Effective area values after confluence:

76.045 71.848 73.259

Results of confluence:

Total flow rate = 188.588(CFS)

Time of concentration = 18.030 min.

Effective stream area after confluence = 73.259(Ac.)

Stream Area average Pervious fraction(Ap) = 0.100

Stream Area average soil loss rate(Fm) = 0.074(In/Hr)

Study area (this main stream) = 76.05(Ac.)

+++++
 Process from Point/Station 62.000 to Point/Station 63.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1065.000(Ft.)
 Downstream point/station elevation = 1042.200(Ft.)
 Pipe length = 1320.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 188.588(CFS)
 Given pipe size = 54.00(In.)
 Calculated individual pipe flow = 188.588(CFS)
 Normal flow depth in pipe = 34.22(In.)
 Flow top width inside pipe = 52.03(In.)
 Critical Depth = 47.46(In.)
 Pipe flow velocity = 17.73(Ft/s)
 Travel time through pipe = 1.24 min.
 Time of concentration (TC) = 19.27 min.

++++++
 Process from Point/Station 63.000 to Point/Station 63.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 73.259(Ac.)
 Runoff from this stream = 188.588(CFS)
 Time of concentration = 19.27 min.
 Rainfall intensity = 2.669(In/Hr)
 Area averaged loss rate (Fm) = 0.0735(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000

++++++
 Process from Point/Station 215.000 to Point/Station 216.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.044(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1074.600(Ft.)
 Bottom (of initial area) elevation = 1071.000(Ft.)
 Difference in elevation = 3.600(Ft.)
 Slope = 0.00360 s(%)= 0.36
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 14.846 min.
 Rainfall intensity = 3.121(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.887
 Subarea runoff = 15.230(CFS)
 Total initial stream area = 5.500(Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.044(In/Hr)

++++++
 Process from Point/Station 216.000 to Point/Station 217.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1071.000(Ft.)

End of street segment elevation = 1063.700(Ft.)
 Length of street segment = 875.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 30.460(CFS)
 Depth of flow = 0.520(Ft.), Average velocity = 3.327(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 3.33(Ft/s)
 Travel time = 4.38 min. TC = 19.23 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.044(In/Hr)
 Rainfall intensity = 2.672(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.885$
 Subarea runoff = 23.797(CFS) for 11.000(Ac.)
 Total runoff = 39.027(CFS)
 Effective area this stream = 16.50(Ac.)
 Total Study Area (Main Stream No. 1) = 94.00(Ac.)
 Area averaged Fm value = 0.044(In/Hr)
 Street flow at end of street = 39.027(CFS)
 Half street flow at end of street = 19.513(CFS)
 Depth of flow = 0.557(Ft.), Average velocity = 3.671(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 217.000 to Point/Station 217.000
 *** CONFLUENCE OF MINOR STREAMS ***

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 16.500(Ac.)
 Runoff from this stream = 39.027(CFS)
 Time of concentration = 19.23 min.
 Rainfall intensity = 2.672(In/Hr)
 Area averaged loss rate (Fm) = 0.0440(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000

++++++
 Process from Point/Station 63.000 to Point/Station 63.000

***** USER DEFINED FLOW INFORMATION AT A POINT *****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil(AMC 2) = 95.59
 Adjusted SCS curve number for AMC 3 = 99.12
 Pervious ratio(Ap) = 0.1110 Max loss rate(Fm)= 0.002 (In/Hr)
 Rainfall intensity = 2.526 (In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 21.12 min. Rain intensity = 2.53 (In/Hr)
 Total area this stream = 203.97 (Ac.)
 Total Study Area (Main Stream No. 1) = 297.97 (Ac.)
 Total runoff = 509.46 (CFS)

+++++
 Process from Point/Station 63.000 to Point/Station 63.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 203.970 (Ac.)
 Runoff from this stream = 509.460 (CFS)
 Time of concentration = 21.12 min.
 Rainfall intensity = 2.526 (In/Hr)
 Area averaged loss rate (Fm) = 0.0020 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1110
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	188.588	19.27	2.669
2	39.027	19.23	2.672
3	509.460	21.12	2.526
Qmax(1) =	1.000 * 1.000 * 188.588) + 0.999 * 1.000 * 39.027) + 1.057 * 0.912 * 509.460) + =		718.707
Qmax(2) =	1.001 * 0.998 * 188.588) + 1.000 * 1.000 * 39.027) + 1.058 * 0.910 * 509.460) + =		718.181
Qmax(3) =	0.945 * 1.000 * 188.588) + 0.944 * 1.000 * 39.027) + 1.000 * 1.000 * 509.460) + =		724.528

Total of 3 streams to confluence:
 Flow rates before confluence point:
 188.588 39.027 509.460
 Maximum flow rates at confluence using above data:
 718.707 718.181 724.528
 Area of streams before confluence:
 73.259 16.500 203.970
 Effective area values after confluence:
 275.867 275.311 293.729
 Results of confluence:
 Total flow rate = 724.528 (CFS)
 Time of concentration = 21.120 min.
 Effective stream area after confluence = 293.729 (Ac.)

Stream Area average Pervious fraction(Ap) = 0.108
 Stream Area average soil loss rate(Fm) = 0.022 (In/Hr)
 Study area (this main stream) = 293.73 (Ac.)

+++++
 Process from Point/Station 63.000 to Point/Station 64.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1039.100 (Ft.)
 Downstream point/station elevation = 1033.800 (Ft.)
 Pipe length = 1320.00 (Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 724.528 (CFS)
 Given pipe size = 90.00 (In.)
 NOTE: Normal flow is pressure flow in user selected pipe size.
 The approximate hydraulic grade line above the pipe invert is
 12.713 (Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 11.748 (Ft.)
 Minor friction loss = 6.265 (Ft.) K-factor = 1.50
 Pipe flow velocity = 16.40 (Ft/s)
 Travel time through pipe = 1.34 min.
 Time of concentration (TC) = 22.46 min.

+++++
 Process from Point/Station 64.000 to Point/Station 64.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 293.729 (Ac.)
 Runoff from this stream = 724.528 (CFS)
 Time of concentration = 22.46 min.
 Rainfall intensity = 2.434 (In/Hr)
 Area averaged loss rate (Fm) = 0.0222 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1076

+++++
 Process from Point/Station 218.000 to Point/Station 219.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1065.500 (Ft.)
 Bottom (of initial area) elevation = 1059.000 (Ft.)
 Difference in elevation = 6.500 (Ft.)
 Slope = 0.00650 s(%) = 0.65
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 16.880 min.
 Rainfall intensity = 2.889 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area ($Q=KCIA$) is $C = 0.831$
 Subarea runoff = 12.012 (CFS)
 Total initial stream area = 5.000 (Ac.)

Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
 Process from Point/Station 219.000 to Point/Station 220.000
 *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 1059.000 (Ft.)
 End of street segment elevation = 1056.500 (Ft.)
 Length of street segment = 500.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 21.622 (CFS)
 Depth of flow = 0.509 (Ft.), Average velocity = 2.489 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 2.49 (Ft/s)
 Travel time = 3.35 min. TC = 20.23 min.
 Adding area flow to street
 RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.220 (In/Hr)
 Rainfall intensity = 2.592 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) (Q=KCIA) is C = 0.824
 Subarea runoff = 15.741 (CFS) for 8.000 (Ac.)
 Total runoff = 27.754 (CFS)
 Effective area this stream = 13.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 310.97 (Ac.)
 Area averaged Fm value = 0.220 (In/Hr)
 Street flow at end of street = 27.754 (CFS)
 Half street flow at end of street = 13.877 (CFS)
 Depth of flow = 0.544 (Ft.), Average velocity = 2.748 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

+++++
 Process from Point/Station 220.000 to Point/Station 221.000
 *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 1056.500 (Ft.)
 End of street segment elevation = 1051.200 (Ft.)

Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 42.000(Ft.)
 Distance from crown to crossfall grade break = 40.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 41.630(CFS)
 Depth of flow = 0.742(Ft.), Average velocity = 3.892(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 3.79(Ft.)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 32.374(Ft.)
 Flow velocity = 3.89(Ft/s)
 Travel time = 2.83 min. TC = 23.05 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.220(In/Hr)
 Rainfall intensity = 2.396(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.817$
 Subarea runoff = 23.176(CFS) for 13.000(Ac.)
 Total runoff = 50.930(CFS)
 Effective area this stream = 26.00(Ac.)
 Total Study Area (Main Stream No. 1) = 323.97(Ac.)
 Area averaged F_m value = 0.220(In/Hr)
 Street flow at end of street = 50.930(CFS)
 Half street flow at end of street = 50.930(CFS)
 Depth of flow = 0.795(Ft.), Average velocity = 4.000(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 6.42(Ft.)
 Flow width (from curb towards crown) = 34.999(Ft.)

+++++
 Process from Point/Station 221.000 to Point/Station 221.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 26.000(Ac.)
 Runoff from this stream = 50.930(CFS)
 Time of concentration = 23.05 min.
 Rainfall intensity = 2.396(In/Hr)
 Area averaged loss rate (F_m) = 0.2200(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.5000
 Summary of stream data:

Stream	Flow rate	TC	Rainfall Intensity
--------	-----------	----	--------------------

No.	(CFS)	(min)	(In/Hr)
1	724.528	22.46	2.434
2	50.930	23.05	2.396
$Q_{max}(1) =$			
	1.000 * 1.000 * 724.528) +		
	1.017 * 0.974 * 50.930) + =		775.009
$Q_{max}(2) =$			
	0.984 * 1.000 * 724.528) +		
	1.000 * 1.000 * 50.930) + =		764.111

Total of 2 streams to confluence:

Flow rates before confluence point:

724.528 50.930

Maximum flow rates at confluence using above data:

775.009 764.111

Area of streams before confluence:

293.729 26.000

Effective area values after confluence:

319.060 319.729

Results of confluence:

Total flow rate = 775.009(CFS)

Time of concentration = 22.461 min.

Effective stream area after confluence = 319.060(Ac.)

Stream Area average Pervious fraction(Ap) = 0.140

Stream Area average soil loss rate(Fm) = 0.038(In/Hr)

Study area (this main stream) = 319.73(Ac.)

+++++
Process from Point/Station 64.000 to Point/Station 71.000

**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1033.800(Ft.)

Downstream point/station elevation = 1030.000(Ft.)

Pipe length = 660.00(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 775.009(CFS)

Given pipe size = 90.00(In.)

NOTE: Normal flow is pressure flow in user selected pipe size.

The approximate hydraulic grade line above the pipe invert is

10.089(Ft.) at the headworks or inlet of the pipe(s)

Pipe friction loss = 6.721(Ft.)

Minor friction loss = 7.168(Ft.) K-factor = 1.50

Pipe flow velocity = 17.54(Ft/s)

Travel time through pipe = 0.63 min.

Time of concentration (TC) = 23.09 min.

+++++
Process from Point/Station 71.000 to Point/Station 71.000

**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1

Stream flow area = 319.060(Ac.)

Runoff from this stream = 775.009(CFS)

Time of concentration = 23.09 min.

Rainfall intensity = 2.394(In/Hr)

Area averaged loss rate (Fm) = 0.0382(In/Hr)

Area averaged Pervious ratio (Ap) = 0.1395

+++++
 Process from Point/Station 71.000 to Point/Station 71.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil(AMC 2) = 91.43
 Adjusted SCS curve number for AMC 3 = 98.29
 Pervious ratio(Ap) = 0.4510 Max loss rate(Fm)= 0.015(In/Hr)
 Rainfall intensity = 2.272(In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 25.20 min. Rain intensity = 2.27(In/Hr)
 Total area this stream = 205.19(Ac.)
 Total Study Area (Main Stream No. 1) = 529.16(Ac.)
 Total runoff = 424.14(CFS)

+++++
 Process from Point/Station 71.000 to Point/Station 71.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 205.190(Ac.)
 Runoff from this stream = 424.140(CFS)
 Time of concentration = 25.20 min.
 Rainfall intensity = 2.272(In/Hr)
 Area averaged loss rate (Fm) = 0.0154(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.4510
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	775.009	23.09	2.394
2	424.140	25.20	2.272
Qmax(1) =	1.000 * 1.000 * 775.009) + 1.054 * 0.916 * 424.140) + =		1184.702
Qmax(2) =	0.948 * 1.000 * 775.009) + 1.000 * 1.000 * 424.140) + =		1158.863

Total of 2 streams to confluence:
 Flow rates before confluence point:
 775.009 424.140
 Maximum flow rates at confluence using above data:
 1184.702 1158.863
 Area of streams before confluence:
 319.060 205.190
 Effective area values after confluence:
 507.057 524.250
 Results of confluence:
 Total flow rate = 1184.702(CFS)
 Time of concentration = 23.089 min.
 Effective stream area after confluence = 507.057(Ac.)
 Stream Area average Pervious fraction(Ap) = 0.261
 Stream Area average soil loss rate(Fm) = 0.029(In/Hr)
 Study area (this main stream) = 524.25(Ac.)

+++++
 Process from Point/Station 71.000 to Point/Station 89.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1030.000(Ft.)
 Downstream point/station elevation = 1025.000(Ft.)
 Pipe length = 680.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 1184.702(CFS)
 Given pipe size = 108.00(In.)
 NOTE: Normal flow is pressure flow in user selected pipe size.
 The approximate hydraulic grade line above the pipe invert is
 9.197(Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 6.119(Ft.)
 Minor friction loss = 8.077(Ft.) K-factor = 1.50
 Pipe flow velocity = 18.62(Ft/s)
 Travel time through pipe = 0.61 min.
 Time of concentration (TC) = 23.70 min.

+++++
 Process from Point/Station 89.000 to Point/Station 89.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 507.057(Ac.)
 Runoff from this stream = 1184.702(CFS)
 Time of concentration = 23.70 min.
 Rainfall intensity = 2.357(In/Hr)
 Area averaged loss rate (Fm) = 0.0293(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.2614

+++++
 Process from Point/Station 89.000 to Point/Station 89.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil(AMC 2) = 99.51
 Adjusted SCS curve number for AMC 3 = 99.90
 Pervious ratio(Ap) = 0.8280 Max loss rate(Fm)= 0.002(In/Hr)
 Rainfall intensity = 3.539(In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 12.04 min. Rain intensity = 3.54(In/Hr)
 Total area this stream = 284.04(Ac.)
 Total Study Area (Main Stream No. 1) = 813.20(Ac.)
 Total runoff = 1062.58(CFS)

+++++
 Process from Point/Station 89.000 to Point/Station 89.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 284.040(Ac.)
 Runoff from this stream = 1062.580(CFS)
 Time of concentration = 12.04 min.
 Rainfall intensity = 3.539(In/Hr)
 Area averaged loss rate (Fm) = 0.0016(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.8280

Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	1184.702	23.70	2.357
2	1062.580	12.04	3.539
$Q_{max}(1) =$			
	1.000 *	1.000 * 1184.702) +	
	0.666 *	1.000 * 1062.580) + =	1892.356
$Q_{max}(2) =$			
	1.508 *	0.508 * 1184.702) +	
	1.000 *	1.000 * 1062.580) + =	1969.987

Total of 2 streams to confluence:

Flow rates before confluence point:

1184.702 1062.580

Maximum flow rates at confluence using above data:

1892.356 1969.987

Area of streams before confluence:

507.057 284.040

Effective area values after confluence:

791.097 541.665

Results of confluence:

Total flow rate = 1969.987(CFS)

Time of concentration = 12.040 min.

Effective stream area after confluence = 541.665 (Ac.)

Stream Area average Pervious fraction(Ap) = 0.465

Stream Area average soil loss rate(Fm) = 0.019 (In/Hr)

Study area (this main stream) = 791.10 (Ac.)

End of computations, Total Study Area = 813.20 (Ac.)

The following figures may

be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 0.458

Area averaged SCS curve number = 88.1

LINE "DZ-4"

San Bernardino County Rational Hydrology Program
 (Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
 Rational Hydrology Study Date: 07/13/04

FONTANA / LINE DZ-4 HYDROLOGY
 100 YEAR STORM
 JN 04339

Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
 10 Year storm 1 hour rainfall = 0.930 (In.)
 100 Year storm 1 hour rainfall = 1.350 (In.)

Computed rainfall intensity:

Storm year = 100.00 1 hour rainfall = 1.350 (In.)
 Slope used for rainfall intensity curve b = 0.6000
 Soil antecedent moisture condition (AMC) = 3

+++++
 Process from Point/Station 600.000 to Point/Station 601.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type

Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil (AMC 2) = 56.00

Adjusted SCS curve number for AMC 3 = 75.80

Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.044 (In/Hr)

Initial subarea data:

Initial area flow distance = 1000.000 (Ft.)

Top (of initial area) elevation = 1065.000 (Ft.)

Bottom (of initial area) elevation = 1060.000 (Ft.)

Difference in elevation = 5.000 (Ft.)

Slope = 0.00500 s(%) = 0.50

TC = $k(0.304) * [(length^3) / (elevation change)]^{0.2}$

Initial area time of concentration = 13.902 min.

Rainfall intensity = 3.246 (In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area (Q=KCIA) is C = 0.888

Subarea runoff = 14.410 (CFS)

Total initial stream area = 5.000 (Ac.)

Pervious area fraction = 0.100

Initial area Fm value = 0.044 (In/Hr)

+++++
 Process from Point/Station 601.000 to Point/Station 602.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1060.000 (Ft.)

End of street segment elevation = 1058.300(Ft.)
 Length of street segment = 330.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 21.615(CFS)
 Depth of flow = 0.507(Ft.), Average velocity = 2.511(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.51(Ft/s)
 Travel time = 2.19 min. TC = 16.09 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044(In/Hr)
 Rainfall intensity = 2.973(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.887$
 Subarea runoff = 11.954(CFS) for 5.000(Ac.)
 Total runoff = 26.364(CFS)
 Effective area this stream = 10.00(Ac.)
 Total Study Area (Main Stream No. 1) = 10.00(Ac.)
 Area averaged F_m value = 0.044(In/Hr)
 Street flow at end of street = 26.364(CFS)
 Half street flow at end of street = 13.182(CFS)
 Depth of flow = 0.534(Ft.), Average velocity = 2.717(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 602.000 to Point/Station 603.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1058.300(Ft.)
 End of street segment elevation = 1055.000(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)

Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 39.546 (CFS)
 Depth of flow = 0.604 (Ft.), Average velocity = 3.162 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 3.16 (Ft/s)
 Travel time = 3.48 min. TC = 19.57 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.044 (In/Hr)
 Rainfall intensity = 2.644 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) (Q=KCIA) is C = 0.885
 Subarea runoff = 20.435 (CFS) for 10.000 (Ac.)
 Total runoff = 46.800 (CFS)
 Effective area this stream = 20.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 20.00 (Ac.)
 Area averaged Fm value = 0.044 (In/Hr)
 Street flow at end of street = 46.800 (CFS)
 Half street flow at end of street = 23.400 (CFS)
 Depth of flow = 0.638 (Ft.), Average velocity = 3.381 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

+++++
 Process from Point/Station 603.000 to Point/Station 607.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1055.000 (Ft.)
 End of street segment elevation = 1052.000 (Ft.)
 Length of street segment = 660.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 42.000 (Ft.)
 Distance from crown to crossfall grade break = 40.500 (Ft.)
 Slope from gutter to grade break (v/Hz) = 0.020
 Slope from grade break to crown (v/Hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000 (Ft.)
 Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 46.800 (CFS)
 Depth of flow = 0.848 (Ft.), Average velocity = 3.110 (Ft/s)
 Warning: depth of flow exceeds top of curb

Distance that curb overflow reaches into property = 9.04(Ft.)

Streetflow hydraulics at midpoint of street travel:

Halfstreet flow width = 37.627(Ft.)

Flow velocity = 3.11(Ft/s)

Travel time = 3.54 min. TC = 23.11 min.

Adding area flow to street

COMMERCIAL subarea type

Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil(AMC 2) = 56.00

Adjusted SCS curve number for AMC 3 = 75.80

Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.044 (In/Hr)

Rainfall intensity = 2.393 (In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.883$

Subarea runoff = 0.000(CFS) for 0.000(Ac.)

Total runoff = 46.800(CFS)

Effective area this stream = 20.00(Ac.)

Total Study Area (Main Stream No. 1) = 20.00(Ac.)

Area averaged Fm value = 0.044 (In/Hr)

Street flow at end of street = 46.800(CFS)

Half street flow at end of street = 46.800(CFS)

Depth of flow = 0.848(Ft.), Average velocity = 3.110(Ft/s)

Warning: depth of flow exceeds top of curb

Distance that curb overflow reaches into property = 9.04(Ft.)

Flow width (from curb towards crown) = 37.627(Ft.)

+++++
Process from Point/Station 607.000 to Point/Station 607.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1

Stream flow area = 20.000(Ac.)

Runoff from this stream = 46.800(CFS)

Time of concentration = 23.11 min.

Rainfall intensity = 2.393 (In/Hr)

Area averaged loss rate (Fm) = 0.0440 (In/Hr)

Area averaged Pervious ratio (Ap) = 0.1000

+++++
Process from Point/Station 604.000 to Point/Station 605.000
**** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type

Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil(AMC 2) = 56.00

Adjusted SCS curve number for AMC 3 = 75.80

Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.044 (In/Hr)

Initial subarea data:

Initial area flow distance = 1000.000(Ft.)

Top (of initial area) elevation = 1062.900(Ft.)

Bottom (of initial area) elevation = 1057.900(Ft.)

Difference in elevation = 5.000(Ft.)

Slope = 0.00500 s(%) = 0.50
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 13.902 min.
 Rainfall intensity = 3.246 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.888
 Subarea runoff = 14.410 (CFS)
 Total initial stream area = 5.000 (Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.044 (In/Hr)

++++++
 Process from Point/Station 605.000 to Point/Station 606.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1057.900 (Ft.)
 End of street segment elevation = 1055.900 (Ft.)
 Length of street segment = 330.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 21.615 (CFS)
 Depth of flow = 0.496 (Ft.), Average velocity = 2.637 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 2.64 (Ft/s)
 Travel time = 2.09 min. TC = 15.99 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.044 (In/Hr)
 Rainfall intensity = 2.985 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) (Q=KCIA) is C = 0.887
 Subarea runoff = 12.059 (CFS) for 5.000 (Ac.)
 Total runoff = 26.469 (CFS)
 Effective area this stream = 10.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 30.00 (Ac.)
 Area averaged Fm value = 0.044 (In/Hr)
 Street flow at end of street = 26.469 (CFS)
 Half street flow at end of street = 13.235 (CFS)
 Depth of flow = 0.523 (Ft.), Average velocity = 2.858 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

+++++
 Process from Point/Station 606.000 to Point/Station 607.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1055.900 (Ft.)
 End of street segment elevation = 1052.000 (Ft.)
 Length of street segment = 660.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 39.704 (CFS)
 Depth of flow = 0.589 (Ft.), Average velocity = 3.331 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 3.33 (Ft/s)
 Travel time = 3.30 min. TC = 19.29 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (Ap) = 0.3500 Max loss rate (Fm) = 0.154 (In/Hr)
 Rainfall intensity = 2.667 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) (Q=KCIA) is C = 0.867
 Subarea runoff = 19.755 (CFS) for 10.000 (Ac.)
 Total runoff = 46.224 (CFS)
 Effective area this stream = 20.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 40.00 (Ac.)
 Area averaged Fm value = 0.099 (In/Hr)
 Street flow at end of street = 46.224 (CFS)
 Half street flow at end of street = 23.112 (CFS)
 Depth of flow = 0.618 (Ft.), Average velocity = 3.538 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

+++++
 Process from Point/Station 607.000 to Point/Station 607.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 20.000 (Ac.)
 Runoff from this stream = 46.224 (CFS)

Time of concentration = 19.29 min.
 Rainfall intensity = 2.667 (In/Hr)
 Area averaged loss rate (Fm) = 0.0990 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.2250
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	46.800	23.11	2.393
2	46.224	19.29	2.667
Qmax(1) =	1.000 * 0.893 *	1.000 * 1.000 *	46.800) + 46.224) + = 88.094
Qmax(2) =	1.117 * 1.000 *	0.835 * 1.000 *	46.800) + 46.224) + = 89.846

Total of 2 streams to confluence:

Flow rates before confluence point:

46.800 46.224

Maximum flow rates at confluence using above data:

88.094 89.846

Area of streams before confluence:

20.000 20.000

Effective area values after confluence:

40.000 36.696

Results of confluence:

Total flow rate = 89.846 (CFS)

Time of concentration = 19.290 min.

Effective stream area after confluence = 36.696 (Ac.)

Stream Area average Pervious fraction (Ap) = 0.163

Stream Area average soil loss rate (Fm) = 0.071 (In/Hr)

Study area (this main stream) = 40.00 (Ac.)

+++++
 Process from Point/Station 607.000 to Point/Station 45.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1047.000 (Ft.)

Downstream point/station elevation = 1041.000 (Ft.)

Pipe length = 660.00 (Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 89.846 (CFS)

Given pipe size = 42.00 (In.)

Calculated individual pipe flow = 89.846 (CFS)

Normal flow depth in pipe = 32.25 (In.)

Flow top width inside pipe = 35.46 (In.)

Critical Depth = 35.27 (In.)

Pipe flow velocity = 11.33 (Ft/s)

Travel time through pipe = 0.97 min.

Time of concentration (TC) = 20.26 min.

+++++
 Process from Point/Station 45.000 to Point/Station 45.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1

Stream flow area = 36.696 (Ac.)
 Runoff from this stream = 89.846 (CFS)
 Time of concentration = 20.26 min.
 Rainfall intensity = 2.590 (In/Hr)
 Area averaged loss rate (Fm) = 0.0715 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1625

+++++
 Process from Point/Station 608.000 to Point/Station 609.000
 ***** INITIAL AREA EVALUATION *****

COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.044 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1060.800 (Ft.)
 Bottom (of initial area) elevation = 1055.800 (Ft.)
 Difference in elevation = 5.000 (Ft.)
 Slope = 0.00500 s(%) = 0.50
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 13.902 min.
 Rainfall intensity = 3.246 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.888
 Subarea runoff = 14.410 (CFS)
 Total initial stream area = 5.000 (Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.044 (In/Hr)

+++++
 Process from Point/Station 609.000 to Point/Station 610.000
 ***** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *****

Top of street segment elevation = 1055.800 (Ft.)
 End of street segment elevation = 1053.500 (Ft.)
 Length of street segment = 330.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 21.615 (CFS)
 Depth of flow = 0.486 (Ft.), Average velocity = 2.774 (Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 19.556 (Ft.)

Flow velocity = 2.77(Ft/s)
 Travel time = 1.98 min. TC = 15.88 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044 (In/Hr)
 Rainfall intensity = 2.997 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q = KCIA$) is $C = 0.887$
 Subarea runoff = 12.164 (CFS) for 5.000 (Ac.)
 Total runoff = 26.574 (CFS)
 Effective area this stream = 10.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 50.00 (Ac.)
 Area averaged F_m value = 0.044 (In/Hr)
 Street flow at end of street = 26.574 (CFS)
 Half street flow at end of street = 13.287 (CFS)
 Depth of flow = 0.514 (Ft.), Average velocity = 2.985 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

++++++
 Process from Point/Station 610.000 to Point/Station 611.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1053.500 (Ft.)
 End of street segment elevation = 1049.000 (Ft.)
 Length of street segment = 660.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 39.861 (CFS)
 Depth of flow = 0.577 (Ft.), Average velocity = 3.484 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 3.48 (Ft/s)
 Travel time = 3.16 min. TC = 19.04 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00

Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.3500 Max loss rate(Fm) = 0.154 (In/Hr)
 Rainfall intensity = 2.688 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.867$
 Subarea runoff = 20.024 (CFS) for 10.000 (Ac.)
 Total runoff = 46.598 (CFS)
 Effective area this stream = 20.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 60.00 (Ac.)
 Area averaged Fm value = 0.099 (In/Hr)
 Street flow at end of street = 46.598 (CFS)
 Half street flow at end of street = 23.299 (CFS)
 Depth of flow = 0.606 (Ft.), Average velocity = 3.706 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

+++++
 Process from Point/Station 611.000 to Point/Station 611.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 20.000 (Ac.)
 Runoff from this stream = 46.598 (CFS)
 Time of concentration = 19.04 min.
 Rainfall intensity = 2.688 (In/Hr)
 Area averaged loss rate (Fm) = 0.0990 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.2250

Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	89.846	20.26	2.590
2	46.598	19.04	2.688
$Q_{max}(1) =$			
	1.000 *	1.000 *	89.846) +
	0.962 *	1.000 *	46.598) + = 134.677
$Q_{max}(2) =$			
	1.039 *	0.940 *	89.846) +
	1.000 *	1.000 *	46.598) + = 134.334

Total of 2 streams to confluence:

Flow rates before confluence point:

89.846 46.598

Maximum flow rates at confluence using above data:

134.677 134.334

Area of streams before confluence:

36.696 20.000

Effective area values after confluence:

56.696 54.489

Results of confluence:

Total flow rate = 134.677 (CFS)

Time of concentration = 20.261 min.

Effective stream area after confluence = 56.696 (Ac.)

Stream Area average Pervious fraction(Ap) = 0.185

Stream Area average soil loss rate(Fm) = 0.081 (In/Hr)

Study area (this main stream) = 56.70 (Ac.)

+++++
Process from Point/Station 45.000 to Point/Station 90.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1040.000 (Ft.)
Downstream point/station elevation = 1025.000 (Ft.)
Pipe length = 750.00 (Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 134.677 (CFS)
Given pipe size = 54.00 (In.)
Calculated individual pipe flow = 134.677 (CFS)
Normal flow depth in pipe = 26.48 (In.)
Flow top width inside pipe = 53.99 (In.)
Critical Depth = 40.96 (In.)
Pipe flow velocity = 17.34 (Ft/s)
Travel time through pipe = 0.72 min.
Time of concentration (TC) = 20.98 min.

+++++
Process from Point/Station 90.000 to Point/Station 90.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
Stream flow area = 56.696 (Ac.)
Runoff from this stream = 134.677 (CFS)
Time of concentration = 20.98 min.
Rainfall intensity = 2.536 (In/Hr)
Area averaged loss rate (Fm) = 0.0812 (In/Hr)
Area averaged Pervious ratio (Ap) = 0.1845

+++++
Process from Point/Station 612.000 to Point/Station 613.000
**** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.044 (In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000 (Ft.)
Top (of initial area) elevation = 1058.700 (Ft.)
Bottom (of initial area) elevation = 1053.700 (Ft.)
Difference in elevation = 5.000 (Ft.)
Slope = 0.00500 s(%) = 0.50
TC = $k(0.304) * [(length^3) / (elevation change)]^{0.2}$
Initial area time of concentration = 13.902 min.
Rainfall intensity = 3.246 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.888
Subarea runoff = 14.410 (CFS)
Total initial stream area = 5.000 (Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.044 (In/Hr)

+++++
Process from Point/Station 613.000 to Point/Station 614.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1053.700(Ft.)
End of street segment elevation = 1051.100(Ft.)
Length of street segment = 330.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 21.615(CFS)
Depth of flow = 0.477(Ft.), Average velocity = 2.905(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 19.101(Ft.)
Flow velocity = 2.91(Ft/s)
Travel time = 1.89 min. TC = 15.80 min.

Adding area flow to street

COMMERCIAL subarea type

Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil (AMC 2) = 56.00

Adjusted SCS curve number for AMC 3 = 75.80

Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.044(In/Hr)

Rainfall intensity = 3.007(In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.887$

Subarea runoff = 12.256(CFS) for 5.000(Ac.)

Total runoff = 26.666(CFS)

Effective area this stream = 10.00(Ac.)

Total Study Area (Main Stream No. 1) = 70.00(Ac.)

Area averaged F_m value = 0.044(In/Hr)

Street flow at end of street = 26.666(CFS)

Half street flow at end of street = 13.333(CFS)

Depth of flow = 0.506(Ft.), Average velocity = 3.102(Ft/s)

Note: depth of flow exceeds top of street crown.

Flow width (from curb towards crown) = 20.000(Ft.)

+++++
Process from Point/Station 614.000 to Point/Station 615.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1051.100(Ft.)

End of street segment elevation = 1046.000(Ft.)

Length of street segment = 660.000(Ft.)

Height of curb above gutter flowline = 8.0(In.)

Width of half street (curb to crown) = 20.000(Ft.)

Distance from crown to crossfall grade break = 18.500(Ft.)

Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 39.998(CFS)
 Depth of flow = 0.567(Ft.), Average velocity = 3.623(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 3.62(Ft/s)
 Travel time = 3.04 min. TC = 18.83 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.3500 Max loss rate(Fm) = 0.154(In/Hr)
 Rainfall intensity = 2.706(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.867$
 Subarea runoff = 20.257(CFS) for 10.000(Ac.)
 Total runoff = 46.922(CFS)
 Effective area this stream = 20.00(Ac.)
 Total Study Area (Main Stream No. 1) = 80.00(Ac.)
 Area averaged Fm value = 0.099(In/Hr)
 Street flow at end of street = 46.922(CFS)
 Half street flow at end of street = 23.461(CFS)
 Depth of flow = 0.595(Ft.), Average velocity = 3.859(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 615.000 to Point/Station 615.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 20.000(Ac.)
 Runoff from this stream = 46.922(CFS)
 Time of concentration = 18.83 min.
 Rainfall intensity = 2.706(In/Hr)
 Area averaged loss rate (Fm) = 0.0990(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.2250
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	134.677	20.98	2.536
2	46.922	18.83	2.706

$$Q_{max}(1) = \begin{array}{r} 1.000 * 1.000 * 134.677) + \\ 0.935 * 1.000 * 46.922) + = 178.541 \end{array}$$

$$Q_{max}(2) = \begin{array}{r} 1.069 * 0.898 * 134.677) + \\ 1.000 * 1.000 * 46.922) + = 176.168 \end{array}$$

Total of 2 streams to confluence:

Flow rates before confluence point:

134.677 46.922

Maximum flow rates at confluence using above data:

178.541 176.168

Area of streams before confluence:

56.696 20.000

Effective area values after confluence:

76.696 70.886

Results of confluence:

Total flow rate = 178.541 (CFS)

Time of concentration = 20.982 min.

Effective stream area after confluence = 76.696 (Ac.)

Stream Area average Pervious fraction (Ap) = 0.195

Stream Area average soil loss rate (Fm) = 0.086 (In/Hr)

Study area (this main stream) = 76.70 (Ac.)

End of computations, Total Study Area = 80.00 (Ac.)

The following figures may

be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction (Ap) = 0.194

Area averaged SCS curve number = 56.0

LINE "DZ-4A"

San Bernardino County Rational Hydrology Program
 (Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
 Rational Hydrology Study Date: 07/13/04

FONTANA / LINE DZ-4A HYDROLOGY
 100 YEAR STORM
 JN 04339

Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
 10 Year storm 1 hour rainfall = 0.930 (In.)
 100 Year storm 1 hour rainfall = 1.350 (In.)

Computed rainfall intensity:

Storm year = 100.00 1 hour rainfall = 1.350 (In.)
 Slope used for rainfall intensity curve b = 0.6000
 Soil antecedent moisture condition (AMC) = 3

+++++
 Process from Point/Station 625.000 to Point/Station 626.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1058.000 (Ft.)
 Bottom (of initial area) elevation = 1051.300 (Ft.)
 Difference in elevation = 6.700 (Ft.)
 Slope = 0.00670 s(%) = 0.67
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 16.778 min.
 Rainfall intensity = 2.900 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.832
 Subarea runoff = 12.060 (CFS)
 Total initial stream area = 5.000 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
 Process from Point/Station 626.000 to Point/Station 627.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1051.300 (Ft.)

End of street segment elevation = 1049.000 (Ft.)
 Length of street segment = 330.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 18.090 (CFS)
 Depth of flow = 0.460 (Ft.), Average velocity = 2.655 (Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 18.264 (Ft.)
 Flow velocity = 2.65 (Ft/s)
 Travel time = 2.07 min. TC = 18.85 min.
 Adding area flow to street
 RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.220 (In/Hr)
 Rainfall intensity = 2.704 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) (Q=KCIA) is C = 0.827
 Subarea runoff = 10.299 (CFS) for 5.000 (Ac.)
 Total runoff = 22.358 (CFS)
 Effective area this stream = 10.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 10.00 (Ac.)
 Area averaged Fm value = 0.220 (In/Hr)
 Street flow at end of street = 22.358 (CFS)
 Half street flow at end of street = 11.179 (CFS)
 Depth of flow = 0.491 (Ft.), Average velocity = 2.798 (Ft/s)
 Flow width (from curb towards crown) = 19.811 (Ft.)

++++++
 Process from Point/Station 627.000 to Point/Station 628.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1049.000 (Ft.)
 End of street segment elevation = 1044.600 (Ft.)
 Length of street segment = 660.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)

Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 33.538 (CFS)
 Depth of flow = 0.551 (Ft.), Average velocity = 3.231 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 3.23 (Ft/s)
 Travel time = 3.40 min. TC = 22.25 min.
 Adding area flow to street
 RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.220 (In/Hr)
 Rainfall intensity = 2.448 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) (Q=KCIA) is C = 0.819
 Subarea runoff = 17.743 (CFS) for 10.000 (Ac.)
 Total runoff = 40.101 (CFS)
 Effective area this stream = 20.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 20.00 (Ac.)
 Area averaged Fm value = 0.220 (In/Hr)
 Street flow at end of street = 40.101 (CFS)
 Half street flow at end of street = 20.051 (CFS)
 Depth of flow = 0.580 (Ft.), Average velocity = 3.468 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

+++++
 Process from Point/Station 628.000 to Point/Station 629.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1044.600 (Ft.)
 End of street segment elevation = 1040.300 (Ft.)
 Length of street segment = 660.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 42.000 (Ft.)
 Distance from crown to crossfall grade break = 40.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 60.152 (CFS)
 Depth of flow = 0.867 (Ft.), Average velocity = 3.771 (Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 9.99 (Ft.)
 Streetflow hydraulics at midpoint of street travel:

Halfstreet flow width = 38.576 (Ft.)
 Flow velocity = 3.77 (Ft/s)
 Travel time = 2.92 min. TC = 25.17 min.
 Adding area flow to street
 RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.220 (In/Hr)
 Rainfall intensity = 2.273 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) (Q=KCIA) is C = 0.813
 Subarea runoff = 33.824 (CFS) for 20.000 (Ac.)
 Total runoff = 73.925 (CFS)
 Effective area this stream = 40.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 40.00 (Ac.)
 Area averaged Fm value = 0.220 (In/Hr)
 Street flow at end of street = 73.925 (CFS)
 Half street flow at end of street = 73.925 (CFS)
 Depth of flow = 0.923 (Ft.), Average velocity = 3.921 (Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 12.82 (Ft.)
 Flow width (from curb towards crown) = 41.399 (Ft.)

+++++
 Process from Point/Station 629.000 to Point/Station 46.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1033.300 (Ft.)
 Downstream point/station elevation = 1026.000 (Ft.)
 Pipe length = 660.00 (Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 73.925 (CFS)
 Given pipe size = 36.00 (In.)
 Calculated individual pipe flow = 73.925 (CFS)
 Normal flow depth in pipe = 31.69 (In.)
 Flow top width inside pipe = 23.38 (In.)
 Critical Depth = 32.48 (In.)
 Pipe flow velocity = 11.22 (Ft/s)
 Travel time through pipe = 0.98 min.
 Time of concentration (TC) = 26.15 min.

+++++
 Process from Point/Station 629.000 to Point/Station 46.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 40.000 (Ac.)
 Runoff from this stream = 73.925 (CFS)
 Time of concentration = 26.15 min.
 Rainfall intensity = 2.222 (In/Hr)
 Area averaged loss rate (Fm) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000

+++++

Process from Point/Station 630.000 to Point/Station 631.000
 ***** INITIAL AREA EVALUATION *****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1052.200 (Ft.)
 Bottom (of initial area) elevation = 1044.000 (Ft.)
 Difference in elevation = 8.200 (Ft.)
 Slope = 0.00820 s(%) = 0.82
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 16.113 min.
 Rainfall intensity = 2.971 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.833
 Subarea runoff = 12.380 (CFS)
 Total initial stream area = 5.000 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
 Process from Point/Station 631.000 to Point/Station 632.000
 ***** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *****

Top of street segment elevation = 1044.000 (Ft.)
 End of street segment elevation = 1041.300 (Ft.)
 Length of street segment = 330.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 18.570 (CFS)
 Depth of flow = 0.453 (Ft.), Average velocity = 2.838 (Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 17.888 (Ft.)
 Flow velocity = 2.84 (Ft/s)
 Travel time = 1.94 min. TC = 18.05 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00

Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.220 (In/Hr)
 Rainfall intensity = 2.775 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.829$
 Subarea runoff = 10.619 (CFS) for 5.000 (Ac.)
 Total runoff = 22.999 (CFS)
 Effective area this stream = 10.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 50.00 (Ac.)
 Area averaged F_m value = 0.220 (In/Hr)
 Street flow at end of street = 22.999 (CFS)
 Half street flow at end of street = 11.499 (CFS)
 Depth of flow = 0.483 (Ft.), Average velocity = 2.992 (Ft/s)
 Flow width (from curb towards crown) = 19.420 (Ft.)

+++++
 Process from Point/Station 632.000 to Point/Station 633.000
 ***** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *****

Top of street segment elevation = 1041.300 (Ft.)
 End of street segment elevation = 1035.900 (Ft.)
 Length of street segment = 660.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 34.498 (CFS)
 Depth of flow = 0.540 (Ft.), Average velocity = 3.475 (Ft/s)
 Note: depth of flow exceeds top of street crown.

Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 3.48 (Ft/s)

Travel time = 3.17 min. TC = 21.22 min.

Adding area flow to street

RESIDENTIAL (5 - 7 dwl/acre)

Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil (AMC 2) = 56.00

Adjusted SCS curve number for AMC 3 = 75.80

Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.220 (In/Hr)

Rainfall intensity = 2.519 (In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.821$

Subarea runoff = 18.383 (CFS) for 10.000 (Ac.)

Total runoff = 41.382 (CFS)

Effective area this stream = 20.00 (Ac.)

Total Study Area (Main Stream No. 1) = 60.00 (Ac.)

Area averaged F_m value = 0.220 (In/Hr)

Street flow at end of street = 41.382(CFS)
 Half street flow at end of street = 20.691(CFS)
 Depth of flow = 0.568(Ft.), Average velocity = 3.736(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 633.000 to Point/Station 633.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 20.000(Ac.)
 Runoff from this stream = 41.382(CFS)
 Time of concentration = 21.22 min.
 Rainfall intensity = 2.519(In/Hr)
 Area averaged loss rate (Fm) = 0.2200(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	73.925	26.15	2.222
2	41.382	21.22	2.519
Qmax(1) =	1.000 * 0.871 *	1.000 * 1.000 *	73.925) + 41.382) + = 109.961
Qmax(2) =	1.148 * 1.000 *	0.811 * 1.000 *	73.925) + 41.382) + = 110.256

Total of 2 streams to confluence:

Flow rates before confluence point:

73.925 41.382

Maximum flow rates at confluence using above data:

109.961 110.256

Area of streams before confluence:

40.000 20.000

Effective area values after confluence:

60.000 52.452

Results of confluence:

Total flow rate = 110.256(CFS)

Time of concentration = 21.216 min.

Effective stream area after confluence = 52.452(Ac.)

Stream Area average Pervious fraction(Ap) = 0.500

Stream Area average soil loss rate(Fm) = 0.220(In/Hr)

Study area (this main stream) = 60.00(Ac.)

+++++
 Process from Point/Station 46.000 to Point/Station 91.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1026.000(Ft.)

Downstream point/station elevation = 1014.500(Ft.)

Pipe length = 750.00(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 110.256(CFS)

Given pipe size = 60.00(In.)

Calculated individual pipe flow = 110.256 (CFS)
 Normal flow depth in pipe = 24.19 (In.)
 Flow top width inside pipe = 58.86 (In.)
 Critical Depth = 35.95 (In.)
 Pipe flow velocity = 14.87 (Ft/s)
 Travel time through pipe = 0.84 min.
 Time of concentration (TC) = 22.06 min.

+++++
 Process from Point/Station 91.000 to Point/Station 91.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 52.452 (Ac.)
 Runoff from this stream = 110.256 (CFS)
 Time of concentration = 22.06 min.
 Rainfall intensity = 2.461 (In/Hr)
 Area averaged loss rate (Fm) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000

+++++
 Process from Point/Station 634.000 to Point/Station 635.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1046.800 (Ft.)
 Bottom (of initial area) elevation = 1041.800 (Ft.)
 Difference in elevation = 5.000 (Ft.)
 Slope = 0.00500 s(%) = 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.829
 Subarea runoff = 13.931 (CFS)
 Total initial stream area = 6.000 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
 Process from Point/Station 635.000 to Point/Station 636.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1041.800 (Ft.)
 End of street segment elevation = 1037.800 (Ft.)
 Length of street segment = 330.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)

Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 20.897(CFS)
 Depth of flow = 0.442(Ft.), Average velocity = 3.389(Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 17.356(Ft.)
 Flow velocity = 3.39(Ft/s)
 Travel time = 1.62 min. TC = 19.41 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.220(In/Hr)
 Rainfall intensity = 2.657(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.825$
 Subarea runoff = 12.388(CFS) for 6.000(Ac.)
 Total runoff = 26.319(CFS)
 Effective area this stream = 12.00(Ac.)
 Total Study Area (Main Stream No. 1) = 72.00(Ac.)
 Area averaged F_m value = 0.220(In/Hr)
 Street flow at end of street = 26.319(CFS)
 Half street flow at end of street = 13.160(CFS)
 Depth of flow = 0.474(Ft.), Average velocity = 3.587(Ft/s)
 Flow width (from curb towards crown) = 18.966(Ft.)

++++++
 Process from Point/Station 636.000 to Point/Station 637.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1037.800(Ft.)
 End of street segment elevation = 1031.000(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 38.382(CFS)

Depth of flow = 0.538(Ft.), Average velocity = 3.887(Ft/s)

Note: depth of flow exceeds top of street crown.

Streetflow hydraulics at midpoint of street travel:

Halfstreet flow width = 20.000(Ft.)

Flow velocity = 3.89(Ft/s)

Travel time = 2.83 min. TC = 22.24 min.

Adding area flow to street

RESIDENTIAL(5 - 7 dwl/acre)

Decimal fraction soil group A = 1.000

Decimal fraction soil group B = 0.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil(AMC 2) = 32.00

Adjusted SCS curve number for AMC 3 = 52.00

Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.393 (In/Hr)

Rainfall intensity = 2.449 (In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.789$

Subarea runoff = 18.104(CFS) for 11.000(Ac.)

Total runoff = 44.424(CFS)

Effective area this stream = 23.00(Ac.)

Total Study Area (Main Stream No. 1) = 83.00(Ac.)

Area averaged Fm value = 0.303 (In/Hr)

Street flow at end of street = 44.424(CFS)

Half street flow at end of street = 22.212(CFS)

Depth of flow = 0.561(Ft.), Average velocity = 4.119(Ft/s)

Note: depth of flow exceeds top of street crown.

Flow width (from curb towards crown) = 20.000(Ft.)

+++++
Process from Point/Station 637.000 to Point/Station 637.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2

Stream flow area = 23.000(Ac.)

Runoff from this stream = 44.424(CFS)

Time of concentration = 22.24 min.

Rainfall intensity = 2.449 (In/Hr)

Area averaged loss rate (Fm) = 0.3025 (In/Hr)

Area averaged Pervious ratio (Ap) = 0.5000

Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
------------	-----------------	----------	----------------------------

1	110.256	22.06	2.461
---	---------	-------	-------

2	44.424	22.24	2.449
---	--------	-------	-------

$Q_{max}(1) = 1.000 * 1.000 * 110.256) + 1.006 * 0.992 * 44.424) + = 154.562$

$Q_{max}(2) = 0.994 * 1.000 * 110.256) + 1.000 * 1.000 * 44.424) + = 154.072$

Total of 2 streams to confluence:

Flow rates before confluence point:

110.256 44.424

Maximum flow rates at confluence using above data:

Depth of flow = 0.538(Ft.), Average velocity = 3.887(Ft/s)

Note: depth of flow exceeds top of street crown.

Streetflow hydraulics at midpoint of street travel:

Halfstreet flow width = 20.000(Ft.)

Flow velocity = 3.89(Ft/s)

Travel time = 2.83 min. TC = 22.24 min.

Adding area flow to street

RESIDENTIAL(5 - 7 dwl/acre)

Decimal fraction soil group A = 1.000

Decimal fraction soil group B = 0.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil (AMC 2) = 32.00

Adjusted SCS curve number for AMC 3 = 52.00

Pervious ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.393 (In/Hr)

Rainfall intensity = 2.449 (In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.789

Subarea runoff = 18.104(CFS) for 11.000(Ac.)

Total runoff = 44.424(CFS)

Effective area this stream = 23.00(Ac.)

Total Study Area (Main Stream No. 1) = 83.00(Ac.)

Area averaged Fm value = 0.303 (In/Hr)

Street flow at end of street = 44.424(CFS)

Half street flow at end of street = 22.212(CFS)

Depth of flow = 0.561(Ft.), Average velocity = 4.119(Ft/s)

Note: depth of flow exceeds top of street crown.

Flow width (from curb towards crown) = 20.000(Ft.)

+++++
Process from Point/Station 637.000 to Point/Station 637.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2

Stream flow area = 23.000(Ac.)

Runoff from this stream = 44.424(CFS)

Time of concentration = 22.24 min.

Rainfall intensity = 2.449 (In/Hr)

Area averaged loss rate (Fm) = 0.3025 (In/Hr)

Area averaged Pervious ratio (Ap) = 0.5000

Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
------------	-----------------	----------	----------------------------

1	110.256	22.06	2.461
---	---------	-------	-------

2	44.424	22.24	2.449
---	--------	-------	-------

Qmax(1) =

$$1.000 * 1.000 * 110.256) + 1.006 * 0.992 * 44.424) + = 154.562$$

Qmax(2) =

$$0.994 * 1.000 * 110.256) + 1.000 * 1.000 * 44.424) + = 154.072$$

Total of 2 streams to confluence:

Flow rates before confluence point:

110.256 44.424

Maximum flow rates at confluence using above data:

154.562 154.072
Area of streams before confluence:
 52.452 23.000
Effective area values after confluence:
 75.260 75.452
Results of confluence:
Total flow rate = 154.562 (CFS)
Time of concentration = 22.057 min.
Effective stream area after confluence = 75.260 (Ac.)
Stream Area average Pervious fraction (Ap) = 0.500
Stream Area average soil loss rate (Fm) = 0.245 (In/Hr)
Study area (this main stream) = 75.45 (Ac.)
End of computations, Total Study Area = 83.00 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
Area averaged pervious area fraction (Ap) = 0.500
Area averaged SCS curve number = 52.8

LINE "14'x9'RCB"

San Bernardino County Rational Hydrology Program

(Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
Rational Hydrology Study Date: 01/10/05-----
FONTANA / LINE JURUPA AVE. 14'X 9' RCB HYDROLOGY
100 YEAR STORM
JN 04339-----
Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
10 Year storm 1 hour rainfall = 0.930 (In.)
100 Year storm 1 hour rainfall = 1.350 (In.)
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.350 (In.)
Slope used for rainfall intensity curve b = 0.6000
Soil antecedent moisture condition (AMC) = 3+++++
Process from Point/Station 89.000 to Point/Station 89.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****-----
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 99.59
Adjusted SCS curve number for AMC 3 = 99.92
Pervious ratio(Ap) = 0.4650 Max loss rate(Fm) = 0.001 (In/Hr)
Rainfall intensity = 3.539 (In/Hr) for a 100.0 year storm
User specified values are as follows:
TC = 12.04 min. Rain intensity = 3.54 (In/Hr)
Total area this stream = 541.67 (Ac.)
Total Study Area (Main Stream No. 1) = 541.67 (Ac.)
Total runoff = 1969.99 (CFS)+++++
Process from Point/Station 89.000 to Point/Station 90.000
**** IMPROVED CHANNEL TRAVEL TIME ****-----
Covered channel
Upstream point elevation = 1028.200 (Ft.)
Downstream point elevation = 1022.300 (Ft.)
Channel length thru subarea = 1320.000 (Ft.)
Channel base width = 14.000 (Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Manning's 'N' = 0.015
Maximum depth of channel = 9.000 (Ft.)
Flow(q) thru subarea = 1969.990 (CFS)
Depth of flow = 8.627 (Ft.), Average velocity = 16.310 (Ft/s)
Channel flow top width = 14.000 (Ft.)
Flow Velocity = 16.31 (Ft/s)

Travel time = 1.35 min.
 Time of concentration = 13.39 min.
 Critical depth = 8.500(Ft.)

+++++
 Process from Point/Station 90.000 to Point/Station 90.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 541.670(Ac.)
 Runoff from this stream = 1969.990(CFS)
 Time of concentration = 13.39 min.
 Rainfall intensity = 3.320(In/Hr)
 Area averaged loss rate (Fm) = 0.0008(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.4650

+++++
 Process from Point/Station 90.000 to Point/Station 90.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil(AMC 2) = 91.44
 Adjusted SCS curve number for AMC 3 = 98.29
 Pervious ratio(Ap) = 0.1950 Max loss rate(Fm)= 0.007(In/Hr)
 Rainfall intensity = 2.536(In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 20.98 min. Rain intensity = 2.54(In/Hr)
 Total area this stream = 76.70(Ac.)
 Total Study Area (Main Stream No. 1) = 618.37(Ac.)
 Total runoff = 178.54(CFS)

+++++
 Process from Point/Station 90.000 to Point/Station 90.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 76.700(Ac.)
 Runoff from this stream = 178.540(CFS)
 Time of concentration = 20.98 min.
 Rainfall intensity = 2.536(In/Hr)
 Area averaged loss rate (Fm) = 0.0066(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1950

+++++
 Process from Point/Station 616.000 to Point/Station 617.000
 **** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.140(In/Hr)
 Initial subarea data:

Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1540.000(Ft.)
 Bottom (of initial area) elevation = 1160.000(Ft.)
 Difference in elevation = 380.000(Ft.)
 Slope = 0.38000 s(%)= 38.00
 $TC = k(0.525) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 10.097 min.
 Rainfall intensity = 3.933(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.868
 Subarea runoff = 23.895(CFS)
 Total initial stream area = 7.000(Ac.)
 Pervious area fraction = 1.000
 Initial area Fm value = 0.140(In/Hr)

++++++
 Process from Point/Station 617.000 to Point/Station 618.000
 *** IRREGULAR CHANNEL FLOW TRAVEL TIME ***

Estimated mean flow rate at midpoint of channel = 54.616(CFS)
 Depth of flow = 0.575(Ft.), Average velocity = 5.511(Ft/s)
 ***** Irregular Channel Data *****

Information entered for subchannel number 1 :
 Point number 'X' coordinate 'Y' coordinate
 1 0.00 5.00
 2 150.00 0.00
 3 300.00 5.00

Manning's 'N' friction factor = 0.035

Sub-Channel flow = 54.616(CFS)
 flow top width = 34.487(Ft.)
 velocity= 5.511(Ft/s)
 area = 9.911(Sq.Ft)
 Froude number = 1.811

Upstream point elevation = 1160.000(Ft.)
 Downstream point elevation = 1080.000(Ft.)
 Flow length = 900.000(Ft.)
 Travel time = 2.72 min.
 Time of concentration = 12.82 min.
 Depth of flow = 0.575(Ft.)
 Average velocity = 5.511(Ft/s)
 Total irregular channel flow = 54.616(CFS)
 Irregular channel normal depth above invert elev. = 0.575(Ft.)
 Average velocity of channel(s) = 5.511(Ft/s)

Sub-Channel No. 1 Critical depth = 0.727(Ft.)
 Critical flow top width = 43.594(Ft.)
 Critical flow velocity= 3.449(Ft/s)
 Critical flow area = 15.837(Sq.Ft)

Adding area flow to channel
 UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.140(In/Hr)

Rainfall intensity = 3.408 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.863$
 Subarea runoff = 49.636 (CFS) for 18.000 (Ac.)
 Total runoff = 73.531 (CFS)
 Effective area this stream = 25.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 643.37 (Ac.)
 Area averaged F_m value = 0.140 (In/Hr)

+++++
 Process from Point/Station 618.000 to Point/Station 90.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1033.000 (Ft.)
 Downstream point/station elevation = 1025.000 (Ft.)
 Pipe length = 420.00 (Ft.) Manning's $N = 0.013$
 No. of pipes = 1 Required pipe flow = 73.531 (CFS)
 Given pipe size = 48.00 (In.)
 Calculated individual pipe flow = 73.531 (CFS)
 Normal flow depth in pipe = 20.25 (In.)
 Flow top width inside pipe = 47.41 (In.)
 Critical Depth = 31.13 (In.)
 Pipe flow velocity = 14.61 (Ft/s)
 Travel time through pipe = 0.48 min.
 Time of concentration (TC) = 13.30 min.

+++++
 Process from Point/Station 90.000 to Point/Station 90.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 25.000 (Ac.)
 Runoff from this stream = 73.531 (CFS)
 Time of concentration = 13.30 min.
 Rainfall intensity = 3.334 (In/Hr)
 Area averaged loss rate (F_m) = 0.1400 (In/Hr)
 Area averaged Pervious ratio (A_p) = 1.0000

+++++
 Process from Point/Station 619.000 to Point/Station 620.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (A_p) = 0.5000 Max loss rate (F_m) = 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1056.400 (Ft.)
 Bottom (of initial area) elevation = 1051.400 (Ft.)
 Difference in elevation = 5.000 (Ft.)
 Slope = 0.00500 s(%) = 0.50
 $TC = k(0.389) * [(\text{length}^3) / (\text{elevation change})]^{0.2}$
 Initial area time of concentration = 17.789 min.

Rainfall intensity = 2.800 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.829
 Subarea runoff = 13.931 (CFS)
 Total initial stream area = 6.000 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
 Process from Point/Station 620.000 to Point/Station 621.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1051.400 (Ft.)
 End of street segment elevation = 1046.000 (Ft.)
 Length of street segment = 1070.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.083
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 20.897 (CFS)
 Depth of flow = 0.504 (Ft.), Average velocity = 2.462 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 2.46 (Ft/s)
 Travel time = 7.24 min. TC = 25.03 min.
 Adding area flow to street
 RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 Decimal fraction soil group (AMC 2) = 56.00
 SCS curve number for soil (AMC 2) = 75.80
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.220 (In/Hr)
 Rainfall intensity = 2.281 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) (Q=KCIA) is C = 0.813
 Subarea runoff = 8.328 (CFS) for 6.000 (Ac.)
 Total runoff = 22.259 (CFS)
 Effective area this stream = 12.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 655.37 (Ac.)
 Area averaged Fm value = 0.220 (In/Hr)
 Street flow at end of street = 22.259 (CFS)
 Half street flow at end of street = 11.129 (CFS)
 Warning: depth of flow exceeds top of curb
 Note: depth of flow exceeds top of street crown.
 Distance that curb overflow reaches into property = 10.00 (Ft.)
 Flow width (from curb towards crown) = 20.000 (Ft.)

+++++

Process from Point/Station 621.000 to Point/Station 621.000
 ***** CONFLUENCE OF MINOR STREAMS *****

Along Main Stream number: 1 in normal stream number 4

Stream flow area = 12.000(Ac.)

Runoff from this stream = 22.259(CFS)

Time of concentration = 25.03 min.

Rainfall intensity = 2.281(In/Hr)

Area averaged loss rate (Fm) = 0.2200(In/Hr)

Area averaged Pervious ratio (Ap) = 0.5000

Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	1969.990	13.39	3.320
2	178.540	20.98	2.536
3	73.531	13.30	3.334
4	22.259	25.03	2.281
Qmax(1) =			
	1.000 *	1.000 * 1969.990) +	
	1.310 *	0.638 * 178.540) +	
	0.996 *	1.000 * 73.531) +	
	1.504 *	0.535 * 22.259) + =	2210.391
Qmax(2) =			
	0.764 *	1.000 * 1969.990) +	
	1.000 *	1.000 * 178.540) +	
	0.750 *	1.000 * 73.531) +	
	1.124 *	0.838 * 22.259) + =	1759.176
Qmax(3) =			
	1.004 *	0.993 * 1969.990) +	
	1.315 *	0.634 * 178.540) +	
	1.000 *	1.000 * 73.531) +	
	1.511 *	0.531 * 22.259) + =	2204.933
Qmax(4) =			
	0.687 *	1.000 * 1969.990) +	
	0.899 *	1.000 * 178.540) +	
	0.670 *	1.000 * 73.531) +	
	1.000 *	1.000 * 22.259) + =	1585.277

Total of 4 streams to confluence:

Flow rates before confluence point:

1969.990 178.540 73.531 22.259

Maximum flow rates at confluence using above data:

2210.391 1759.176 2204.933 1585.277

Area of streams before confluence:

541.670 76.700 25.000 12.000

Effective area values after confluence:

622.036 653.427 618.009 655.370

Results of confluence:

Total flow rate = 2210.391(CFS)

Time of concentration = 13.389 min.

Effective stream area after confluence = 622.036(Ac.)

Stream Area average Pervious fraction(Ap) = 0.454

Stream Area average soil loss rate(Fm) = 0.011(In/Hr)

Study area (this main stream) = 655.37(Ac.)

+++++
 Process from Point/Station 90.000 to Point/Station 91.000

***** IMPROVED CHANNEL TRAVEL TIME *****

Covered channel

Upstream point elevation = 1022.300(Ft.)
 Downstream point elevation = 1013.100(Ft.)
 Channel length thru subarea = 1320.000(Ft.)
 Channel base width = 14.000(Ft.)
 Slope or 'Z' of left channel bank = 0.000
 Slope or 'Z' of right channel bank = 0.000
 Manning's 'N' = 0.015
 Maximum depth of channel = 9.000(Ft.)
 Flow(q) thru subarea = 2210.391(CFS)
 Depth of flow = 7.948(Ft.), Average velocity = 19.864(Ft/s)
 Channel flow top width = 14.000(Ft.)
 Flow Velocity = 19.86(Ft/s)
 Travel time = 1.11 min.
 Time of concentration = 14.50 min.
 Critical depth = 9.125(Ft.)

+++++
 Process from Point/Station 91.000 to Point/Station 91.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 622.036(Ac.)
 Runoff from this stream = 2210.391(CFS)
 Time of concentration = 14.50 min.
 Rainfall intensity = 3.166(In/Hr)
 Area averaged loss rate (Fm) = 0.0108(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.4545

+++++
 Process from Point/Station 91.000 to Point/Station 91.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil(AMC 2) = 89.16
 Adjusted SCS curve number for AMC 3 = 97.83
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.021(In/Hr)
 Rainfall intensity = 2.461(In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 22.06 min. Rain intensity = 2.46(In/Hr)
 Total area this stream = 75.26(Ac.)
 Total Study Area (Main Stream No. 1) = 730.63(Ac.)
 Total runoff = 154.56(CFS)

+++++
 Process from Point/Station 91.000 to Point/Station 91.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 75.260(Ac.)
 Runoff from this stream = 154.560(CFS)
 Time of concentration = 22.06 min.
 Rainfall intensity = 2.461(In/Hr)
 Area averaged loss rate (Fm) = 0.0215(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000

+++++
 Process from Point/Station 638.000 to Point/Station 639.000
 **** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.140 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1900.000(Ft.)
 Bottom (of initial area) elevation = 1540.000(Ft.)
 Difference in elevation = 360.000(Ft.)
 Slope = 0.36000 s(%)= 36.00
 $TC = k(0.525) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 10.207 min.
 Rainfall intensity = 3.907 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.868
 Subarea runoff = 33.906(CFS)
 Total initial stream area = 10.000(Ac.)
 Pervious area fraction = 1.000
 Initial area Fm value = 0.140 (In/Hr)

+++++
 Process from Point/Station 639.000 to Point/Station 640.000
 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 67.812(CFS)
 Depth of flow = 0.867(Ft.), Average velocity = 18.062(Ft/s)
 ***** Irregular Channel Data *****

Information entered for subchannel number 1 :
 Point number 'X' coordinate 'Y' coordinate
 1 0.00 20.00
 2 100.00 0.00
 3 200.00 20.00

Manning's 'N' friction factor = 0.035

Sub-Channel flow = 67.812(CFS)
 ' ' flow top width = 8.665(Ft.)
 ' ' velocity= 18.062(Ft/s)
 ' ' area = 3.754(Sq.Ft)
 ' ' Froude number = 4.836

Upstream point elevation = 1540.000(Ft.)
 Downstream point elevation = 1200.000(Ft.)
 Flow length = 600.000(Ft.)
 Travel time = 0.55 min.
 Time of concentration = 10.76 min.
 Depth of flow = 0.867(Ft.)
 Average velocity = 18.062(Ft/s)
 Total irregular channel flow = 67.812(CFS)
 Irregular channel normal depth above invert elev. = 0.867(Ft.)
 Average velocity of channel(s) = 18.062(Ft/s)

Sub-Channel No. 1 Critical depth = 1.625(Ft.)
 ' ' ' Critical flow top width = 16.250(Ft.)
 ' ' ' Critical flow velocity= 5.136(Ft/s)
 ' ' ' Critical flow area = 13.203(Sq.Ft)

Adding area flow to channel
 UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Previous ratio(A_p) = 1.0000 Max loss rate(F_m)= 0.140(In/Hr)
 Rainfall intensity = 3.785(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.867$
 Subarea runoff = 64.521(CFS) for 20.000(Ac.)
 Total runoff = 98.428(CFS)
 Effective area this stream = 30.00(Ac.)
 Total Study Area (Main Stream No. 1) = 760.63(Ac.)
 Area averaged F_m value = 0.140(In/Hr)

+++++
 Process from Point/Station 640.000 to Point/Station 641.000
 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 167.327(CFS)
 Depth of flow = 0.702(Ft.), Average velocity = 6.790(Ft/s)
 ***** Irregular Channel Data *****

Information entered for subchannel number 1 :
 Point number 'X' coordinate 'Y' coordinate
 1 0.00 4.00
 2 200.00 0.00
 3 400.00 4.00

Manning's 'N' friction factor = 0.035

Sub-Channel flow = 167.327(CFS)
 ' ' flow top width = 70.202(Ft.)
 ' ' velocity= 6.790(Ft/s)
 ' ' area = 24.642(Sq.Ft)
 ' ' Froude number = 2.020

Upstream point elevation = 1200.000(Ft.)
 Downstream point elevation = 1045.000(Ft.)
 Flow length = 1500.000(Ft.)
 Travel time = 3.68 min.
 Time of concentration = 14.44 min.
 Depth of flow = 0.702(Ft.)
 Average velocity = 6.790(Ft/s)
 Total irregular channel flow = 167.327(CFS)
 Irregular channel normal depth above invert elev. = 0.702(Ft.)
 Average velocity of channel(s) = 6.790(Ft/s)

Sub-Channel No. 1 Critical depth = 0.930(Ft.)
 ' ' ' Critical flow top width = 92.969(Ft.)
 ' ' ' Critical flow velocity= 3.872(Ft/s)
 ' ' ' Critical flow area = 43.216(Sq.Ft)

Adding area flow to channel
 UNDEVELOPED (poor cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 78.00
 Adjusted SCS curve number for AMC 3 = 92.80
 Pervious ratio(A_p) = 1.0000 Max loss rate(F_m) = 0.140 (In/Hr)
 Rainfall intensity = 3.173 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.860$
 Subarea runoff = 98.096 (CFS) for 42.000 (Ac.)
 Total runoff = 196.524 (CFS)
 Effective area this stream = 72.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 802.63 (Ac.)
 Area averaged F_m value = 0.140 (In/Hr)

++++++
 Process from Point/Station 641.000 to Point/Station 91.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1035.000 (Ft.)
 Downstream point/station elevation = 1015.400 (Ft.)
 Pipe length = 450.00 (Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 196.524 (CFS)
 Given pipe size = 42.00 (In.)
 Calculated individual pipe flow = 196.524 (CFS)
 Normal flow depth in pipe = 32.25 (In.)
 Flow top width inside pipe = 35.46 (In.)
 Critical depth could not be calculated.
 Pipe flow velocity = 24.81 (Ft/s)
 Travel time through pipe = 0.30 min.
 Time of concentration (TC) = 14.74 min.

++++++
 Process from Point/Station 91.000 to Point/Station 91.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 72.000 (Ac.)
 Runoff from this stream = 196.524 (CFS)
 Time of concentration = 14.74 min.
 Rainfall intensity = 3.134 (In/Hr)
 Area averaged loss rate (F_m) = 0.1400 (In/Hr)
 Area averaged Pervious ratio (A_p) = 1.0000

++++++
 Process from Point/Station 642.000 to Point/Station 643.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00

Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1042.000(Ft.)
 Bottom (of initial area) elevation = 1037.000(Ft.)
 Difference in elevation = 5.000(Ft.)
 Slope = 0.00500 s(%)= 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.829
 Subarea runoff = 13.931(CFS)
 Total initial stream area = 6.000(Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
 Process from Point/Station 643.000 to Point/Station 644.000
 *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 1037.000(Ft.)
 End of street segment elevation = 1031.000(Ft.)
 Length of street segment = 1200.000(Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/Hz) = 0.083
 Slope from grade break to crown (v/Hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 23.219(CFS)
 Depth of flow = 0.518(Ft.), Average velocity = 2.560(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.56(Ft/s)
 Travel time = 7.81 min. TC = 25.60 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.393 (In/Hr)
 Rainfall intensity = 2.250 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.773
 Subarea runoff = 10.410(CFS) for 8.000(Ac.)
 Total runoff = 24.341(CFS)
 Effective area this stream = 14.00(Ac.)
 Total Study Area (Main Stream No. 1) = 816.63(Ac.)

Area averaged Fm value = 0.319 (In/Hr)
 Street flow at end of street = 24.341 (CFS)
 Half street flow at end of street = 12.170 (CFS)
 Warning: depth of flow exceeds top of curb
 Note: depth of flow exceeds top of street crown.
 Distance that curb overflow reaches into property = 10.00 (Ft.)
 Flow width (from curb towards crown) = 20.000 (Ft.)

+++++
 Process from Point/Station 644.000 to Point/Station 644.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 4
 Stream flow area = 14.000 (Ac.)
 Runoff from this stream = 24.341 (CFS)
 Time of concentration = 25.60 min.
 Rainfall intensity = 2.250 (In/Hr)
 Area averaged loss rate (Fm) = 0.3186 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000

+++++
 Process from Point/Station 645.000 to Point/Station 646.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.393 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1042.000 (Ft.)
 Bottom (of initial area) elevation = 1037.000 (Ft.)
 Difference in elevation = 5.000 (Ft.)
 Slope = 0.00500 s(%) = 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.
 Rainfall intensity = 2.800 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.774
 Subarea runoff = 12.999 (CFS)
 Total initial stream area = 6.000 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.393 (In/Hr)

+++++
 Process from Point/Station 646.000 to Point/Station 647.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1037.000 (Ft.)
 End of street segment elevation = 1031.000 (Ft.)
 Length of street segment = 1200.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.083

Slope from grade break to crown (v/Hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 20.582(CFS)
 Depth of flow = 0.502(Ft.), Average velocity = 2.440(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.44(Ft/s)
 Travel time = 8.20 min. TC = 25.99 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.393(In/Hr)
 Rainfall intensity = 2.230(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.742$
 Subarea runoff = 8.504(CFS) for 7.000(Ac.)
 Total runoff = 21.503(CFS)
 Effective area this stream = 13.00(Ac.)
 Total Study Area (Main Stream No. 1) = 829.63(Ac.)
 Area averaged F_m value = 0.393(In/Hr)
 Street flow at end of street = 21.503(CFS)
 Half street flow at end of street = 10.751(CFS)
 Warning: depth of flow exceeds top of curb
 Note: depth of flow exceeds top of street crown.
 Distance that curb overflow reaches into property = 10.00(Ft.)
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 647.000 to Point/Station 647.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 5
 Stream flow area = 13.000(Ac.)
 Runoff from this stream = 21.503(CFS)
 Time of concentration = 25.99 min.
 Rainfall intensity = 2.230(In/Hr)
 Area averaged loss rate (F_m) = 0.3926(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	2210.391	14.50	3.166
2	154.560	22.06	2.461
3	196.524	14.74	3.134

4	24.341	25.60	2.250
5	21.503	25.99	2.230
Qmax(1) =			
	1.000 *	1.000 *	2210.391) +
	1.289 *	0.657 *	154.560) +
	1.011 *	0.983 *	196.524) +
	1.474 *	0.566 *	24.341) +
	1.509 *	0.558 *	21.503) + = 2575.011
Qmax(2) =			
	0.777 *	1.000 *	2210.391) +
	1.000 *	1.000 *	154.560) +
	0.775 *	1.000 *	196.524) +
	1.109 *	0.862 *	24.341) +
	1.125 *	0.849 *	21.503) + = 2067.181
Qmax(3) =			
	0.990 *	1.000 *	2210.391) +
	1.276 *	0.668 *	154.560) +
	1.000 *	1.000 *	196.524) +
	1.457 *	0.576 *	24.341) +
	1.491 *	0.567 *	21.503) + = 2554.859
Qmax(4) =			
	0.710 *	1.000 *	2210.391) +
	0.914 *	1.000 *	154.560) +
	0.705 *	1.000 *	196.524) +
	1.000 *	1.000 *	24.341) +
	1.011 *	0.985 *	21.503) + = 1894.671
Qmax(5) =			
	0.704 *	1.000 *	2210.391) +
	0.906 *	1.000 *	154.560) +
	0.698 *	1.000 *	196.524) +
	0.990 *	1.000 *	24.341) +
	1.000 *	1.000 *	21.503) + = 1877.927

Total of 5 streams to confluence:

Flow rates before confluence point:

2210.391	154.560	196.524	24.341	21.503
----------	---------	---------	--------	--------

Maximum flow rates at confluence using above data:

2575.011	2067.181	2554.859	1894.671	1877.927
----------	----------	----------	----------	----------

Area of streams before confluence:

622.036	75.260	72.000	14.000	13.000
---------	--------	--------	--------	--------

Effective area values after confluence:

757.459	792.396	759.779	796.104	796.296
---------	---------	---------	---------	---------

Results of confluence:

Total flow rate = 2575.011(CFS)

Time of concentration = 14.496 min.

Effective stream area after confluence = 757.459(Ac.)

Stream Area average Pervious fraction(Ap) = 0.510

Stream Area average soil loss rate(Fm) = 0.035(In/Hr)

Study area (this main stream) = 796.30(Ac.)

+++++
Process from Point/Station 91.000 to Point/Station 92.000
**** IMPROVED CHANNEL TRAVEL TIME ****

Covered channel

Upstream point elevation = 1013.100(Ft.)

Downstream point elevation = 1006.400(Ft.)

Channel length thru subarea = 1340.000(Ft.)

Channel base width = 14.000(Ft.)

Slope or 'Z' of left channel bank = 0.000

Slope or 'Z' of right channel bank = 0.000
 Manning's 'N' = 0.013
 Maximum depth of channel = 9.000(Ft.)
 Flow(q) thru subarea = 2575.011(CFS)
 Pressure flow condition in covered channel:
 Wetted perimeter = 46.00(Ft.) Flow area = 126.00(Sq.Ft)
 Hydraulic grade line required at box inlet = 13.253(Ft.)
 Friction loss = 19.953(Ft.)
 Minor Friction loss = 0.000(Ft.) K-Factor = 0.000
 Flow Velocity = 20.44(Ft/s)
 Travel time = 1.09 min.
 Time of concentration = 22.07 min.

++++++
 Process from Point/Station 92.000 to Point/Station 92.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 757.459(Ac.)
 Runoff from this stream = 2575.011(CFS)
 Time of concentration = 22.07 min.
 Rainfall intensity = 2.460(In/Hr)
 Area averaged loss rate (Fm) = 0.0351(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5096

++++++
 Process from Point/Station 650.000 to Point/Station 651.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.393(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1040.300(Ft.)
 Bottom (of initial area) elevation = 1033.600(Ft.)
 Difference in elevation = 6.700(Ft.)
 Slope = 0.00670 s(%)= 0.67
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 16.778 min.
 Rainfall intensity = 2.900(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.778
 Subarea runoff = 11.283(CFS)
 Total initial stream area = 5.000(Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.393(In/Hr)

++++++
 Process from Point/Station 651.000 to Point/Station 652.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1033.600(Ft.)
 End of street segment elevation = 1031.400(Ft.)

Length of street segment = 330.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.083
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 16.924(CFS)
 Depth of flow = 0.454(Ft.), Average velocity = 2.568(Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 17.955(Ft.)
 Flow velocity = 2.57(Ft/s)
 Travel time = 2.14 min. TC = 18.92 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.393(In/Hr)
 Rainfall intensity = 2.698(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.769$
 Subarea runoff = 9.468(CFS) for 5.000(Ac.)
 Total runoff = 20.751(CFS)
 Effective area this stream = 10.00(Ac.)
 Total Study Area (Main Stream No. 1) = 839.63(Ac.)
 Area averaged F_m value = 0.393(In/Hr)
 Street flow at end of street = 20.751(CFS)
 Half street flow at end of street = 10.376(CFS)
 Depth of flow = 0.483(Ft.), Average velocity = 2.701(Ft/s)
 Flow width (from curb towards crown) = 19.417(Ft.)

++++++
 Process from Point/Station 652.000 to Point/Station 653.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1031.400(Ft.)
 End of street segment elevation = 1026.000(Ft.)
 Length of street segment = 750.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.083
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150

Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 32.164 (CFS)
 Depth of flow = 0.539(Ft.), Average velocity = 3.252(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 3.25(Ft/s)
 Travel time = 3.84 min. TC = 22.76 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.393 (In/Hr)
 Rainfall intensity = 2.415 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.754$
 Subarea runoff = 17.470(CFS) for 11.000(Ac.)
 Total runoff = 38.221(CFS)
 Effective area this stream = 21.00(Ac.)
 Total Study Area (Main Stream No. 1) = 850.63(Ac.)
 Area averaged F_m value = 0.393 (In/Hr)
 Street flow at end of street = 38.221(CFS)
 Half street flow at end of street = 19.110(CFS)
 Warning: depth of flow exceeds top of curb
 Note: depth of flow exceeds top of street crown.
 Distance that curb overflow reaches into property = 10.00(Ft.)
 Flow width (from curb towards crown)= 20.000(Ft.)

++++++
 Process from Point/Station 653.000 to Point/Station 654.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1026.000(Ft.)
 End of street segment elevation = 1023.000(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 42.000(Ft.)
 Distance from crown to crossfall grade break = 40.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.083
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 48.231(CFS)
 Depth of flow = 0.856(Ft.), Average velocity = 3.127(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 9.44(Ft.)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 38.028(Ft.)
 Flow velocity = 3.13(Ft/s)

Travel time = 3.52 min. TC = 26.28 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.393 (In/Hr)
 Rainfall intensity = 2.215 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.741$
 Subarea runoff = 14.275 (CFS) for 11.000 (Ac.)
 Total runoff = 52.496 (CFS)
 Effective area this stream = 32.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 861.63 (Ac.)
 Area averaged F_m value = 0.393 (In/Hr)
 Street flow at end of street = 52.496 (CFS)
 Half street flow at end of street = 52.496 (CFS)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 13.42 (Ft.)
 Flow width (from curb towards crown) = 42.000 (Ft.)

++++++
 Process from Point/Station 654.000 to Point/Station 654.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 32.000 (Ac.)
 Runoff from this stream = 52.496 (CFS)
 Time of concentration = 26.28 min.
 Rainfall intensity = 2.215 (In/Hr)
 Area averaged loss rate (F_m) = 0.3926 (In/Hr)
 Area averaged Pervious ratio (A_p) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	2575.011	22.07	2.460
2	52.496	26.28	2.215
$Q_{max}(1)$ =	1.000 * 1.000 * 2575.011) + 1.134 * 0.840 * 52.496) + =		2625.016
$Q_{max}(2)$ =	0.899 * 1.000 * 2575.011) + 1.000 * 1.000 * 52.496) + =		2367.845

Total of 2 streams to confluence:
 Flow rates before confluence point:
 2575.011 52.496
 Maximum flow rates at confluence using above data:
 2625.016 2367.845
 Area of streams before confluence:
 757.459 32.000
 Effective area values after confluence:
 784.335 789.459
 Results of confluence:

Total flow rate = 2625.016(CFS)
Time of concentration = 22.073 min.
Effective stream area after confluence = 784.335(Ac.)
Stream Area average Pervious fraction(Ap) = 0.509
Stream Area average soil loss rate(Fm) = 0.050(In/Hr)
Study area (this main stream) = 789.46(Ac.)

++++++
Process from Point/Station 92.000 to Point/Station 93.000
**** IMPROVED CHANNEL TRAVEL TIME ****

Covered channel
Upstream point elevation = 1006.400(Ft.)
Downstream point elevation = 1005.500(Ft.)
Channel length thru subarea = 450.000(Ft.)
Channel base width = 14.000(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Manning's 'N' = 0.015
Maximum depth of channel = 9.000(Ft.)
Flow(q) thru subarea = 2625.016(CFS)
Pressure flow condition in covered channel:
Wetted perimeter = 46.00(Ft.) Flow area = 126.00(Sq.Ft)
Hydraulic grade line required at box inlet = 8.371(Ft.)
Friction loss = 9.271(Ft.)
Minor Friction loss = 0.000(Ft.) K-Factor = 0.000
Flow Velocity = 20.83(Ft/s)
Travel time = 0.36 min.
Time of concentration = 21.34 min.
End of computations, Total Study Area = 861.63 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 0.507
Area averaged SCS curve number = 90.5

LINE "DZ-6"

San Bernardino County Rational Hydrology Program

(Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
Rational Hydrology Study Date: 01/06/05FONTANA / LINE DZ-6 HYDROLOGY
100 YEAR STORM
JN 04339

Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
10 Year storm 1 hour rainfall = 0.930 (In.)

100 Year storm 1 hour rainfall = 1.350 (In.)

Computed rainfall intensity:

Storm year = 100.00 1 hour rainfall = 1.350 (In.)

Slope used for rainfall intensity curve b = 0.6000

Soil antecedent moisture condition (AMC) = 3

+++++
Process from Point/Station 714.000 to Point/Station 715.000
**** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type

Decimal fraction soil group A = 1.000

Decimal fraction soil group B = 0.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil (AMC 2) = 32.00

Adjusted SCS curve number for AMC 3 = 52.00

Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.079 (In/Hr)

Initial subarea data:

Initial area flow distance = 1000.000 (Ft.)

Top (of initial area) elevation = 1104.000 (Ft.)

Bottom (of initial area) elevation = 1092.000 (Ft.)

Difference in elevation = 12.000 (Ft.)

Slope = 0.01200 s(%) = 1.20

TC = k(0.304)*[(length^3)/(elevation change)]^0.2

Initial area time of concentration = 11.669 min.

Rainfall intensity = 3.606 (In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area (Q=KCIA) is C = 0.880

Subarea runoff = 22.222 (CFS)

Total initial stream area = 7.000 (Ac.)

Pervious area fraction = 0.100

Initial area Fm value = 0.079 (In/Hr)

+++++
Process from Point/Station 715.000 to Point/Station 716.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****Top of street segment elevation = 1092.000 (Ft.)
End of street segment elevation = 1089.000 (Ft.)

Length of street segment = 800.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 39.682(CFS)
 Depth of flow = 0.633(Ft.), Average velocity = 2.903(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.90(Ft/s)
 Travel time = 4.59 min. TC = 16.26 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.079(In/Hr)
 Rainfall intensity = 2.955(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.876$
 Subarea runoff = 24.374(CFS) for 11.000(Ac.)
 Total runoff = 46.596(CFS)
 Effective area this stream = 18.00(Ac.)
 Total Study Area (Main Stream No. 1) = 18.00(Ac.)
 Area averaged F_m value = 0.079(In/Hr)
 Street flow at end of street = 46.596(CFS)
 Half street flow at end of street = 23.298(CFS)
 Depth of flow = 0.669(Ft.), Average velocity = 3.088(Ft/s)
 Warning: depth of flow exceeds top of curb
 Note: depth of flow exceeds top of street crown.
 Distance that curb overflow reaches into property = 0.10(Ft.)
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 716.000 to Point/Station 717.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1089.000(Ft.)
 End of street segment elevation = 1081.500(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 42.000(Ft.)
 Distance from crown to crossfall grade break = 40.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000(Ft.)

Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter height from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 72.482(CFS)
 Depth of flow = 0.842(Ft.), Average velocity = 4.900(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 8.77(Ft.)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 37.352(Ft.)
 Flow velocity = 4.90(Ft/s)
 Travel time = 2.24 min. TC = 18.51 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Previous ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.079(In/Hr)
 Rainfall intensity = 2.734(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.874$
 Subarea runoff = 44.229(CFS) for 20.000(Ac.)
 Total runoff = 90.824(CFS)
 Effective area this stream = 38.00(Ac.)
 Total Study Area (Main Stream No. 1) = 38.00(Ac.)
 Area averaged F_m value = 0.079(In/Hr)
 Street flow at end of street = 90.824(CFS)
 Half street flow at end of street = 90.824(CFS)
 Depth of flow = 0.903(Ft.), Average velocity = 5.107(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 11.81(Ft.)
 Flow width (from curb towards crown) = 40.396(Ft.)

++++++
 Process from Point/Station 717.000 to Point/Station 33.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1075.000(Ft.)
 Downstream point/station elevation = 1061.000(Ft.)
 Pipe length = 990.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 90.824(CFS)
 Given pipe size = 36.00(In.)
 NOTE: Normal flow is pressure flow in user selected pipe size.
 The approximate hydraulic grade line above the pipe invert is
 8.197(Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 18.351(Ft.)
 Minor friction loss = 3.845(Ft.) K-factor = 1.50
 Pipe flow velocity = 12.85(Ft/s)
 Travel time through pipe = 1.28 min.
 Time of concentration (TC) = 19.79 min.

++++++
 Process from Point/Station 33.000 to Point/Station 33.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 38.000(Ac.)
 Runoff from this stream = 90.824(CFS)
 Time of concentration = 19.79 min.
 Rainfall intensity = 2.626(In/Hr)
 Area averaged loss rate (Fm) = 0.0785(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000

+++++
 Process from Point/Station 718.000 to Point/Station 719.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1082.000(Ft.)
 Bottom (of initial area) elevation = 1075.000(Ft.)
 Difference in elevation = 7.000(Ft.)
 Slope = 0.00700 s(%)= 0.70
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 12.997 min.
 Rainfall intensity = 3.380(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.879
 Subarea runoff = 14.857(CFS)
 Total initial stream area = 5.000(Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.079(In/Hr)

+++++
 Process from Point/Station 719.000 to Point/Station 720.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1075.000(Ft.)
 End of street segment elevation = 1073.300(Ft.)
 Length of street segment = 330.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 22.285(CFS)
 Depth of flow = 0.511(Ft.), Average velocity = 2.541(Ft/s)
 Note: depth of flow exceeds top of street crown.

Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.54(Ft/s)
 Travel time = 2.16 min. TC = 15.16 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.079(In/Hr)
 Rainfall intensity = 3.082(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.877$
 Subarea runoff = 12.171(CFS) for 5.000(Ac.)
 Total runoff = 27.028(CFS)
 Effective area this stream = 10.00(Ac.)
 Total Study Area (Main Stream No. 1) = 48.00(Ac.)
 Area averaged F_m value = 0.079(In/Hr)
 Street flow at end of street = 27.028(CFS)
 Half street flow at end of street = 13.514(CFS)
 Depth of flow = 0.538(Ft.), Average velocity = 2.744(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 720.000 to Point/Station 721.000
 *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 1073.300(Ft.)
 End of street segment elevation = 1070.000(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 40.542(CFS)
 Depth of flow = 0.609(Ft.), Average velocity = 3.194(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 3.19(Ft/s)
 Travel time = 3.44 min. TC = 18.61 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000

SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.079 (In/Hr)
 Rainfall intensity = 2.725 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.874$
 Subarea runoff = 20.617 (CFS) for 10.000 (Ac.)
 Total runoff = 47.645 (CFS)
 Effective area this stream = 20.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 58.00 (Ac.)
 Area averaged F_m value = 0.079 (In/Hr)
 Street flow at end of street = 47.645 (CFS)
 Half street flow at end of street = 23.822 (CFS)
 Depth of flow = 0.641 (Ft.), Average velocity = 3.405 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

++++++
 Process from Point/Station 721.000 to Point/Station 722.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1070.000 (Ft.)
 End of street segment elevation = 1068.000 (Ft.)
 Length of street segment = 330.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 42.000 (Ft.)
 Distance from crown to crossfall grade break = 40.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 59.556 (CFS)
 Depth of flow = 0.874 (Ft.), Average velocity = 3.655 (Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 10.34 (Ft.)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 38.928 (Ft.)
 Flow velocity = 3.65 (Ft/s)
 Travel time = 1.50 min. TC = 20.11 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.3500 Max loss rate(F_m) = 0.275 (In/Hr)
 Rainfall intensity = 2.601 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.850$
 Subarea runoff = 18.700 (CFS) for 10.000 (Ac.)
 Total runoff = 66.345 (CFS)
 Effective area this stream = 30.00 (Ac.)

Total Study Area (Main Stream No. 1) = 68.00(Ac.)
 Area averaged Fm value = 0.144(In/Hr)
 Street flow at end of street = 66.345(CFS)
 Half street flow at end of street = 66.345(CFS)
 Depth of flow = 0.903(Ft.), Average velocity = 3.730(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 11.82(Ft.)
 Flow width (from curb towards crown)= 40.400(Ft.)

++++++
 Process from Point/Station 722.000 to Point/Station 722.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 30.000(Ac.)
 Runoff from this stream = 66.345(CFS)
 Time of concentration = 20.11 min.
 Rainfall intensity = 2.601(In/Hr)
 Area averaged loss rate (Fm) = 0.1439(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1833
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	90.824	19.79	2.626
2	66.345	20.11	2.601
Qmax(1) =	1.000 *	1.000 * 90.824) +	
	1.010 *	0.984 * 66.345) + =	156.782
Qmax(2) =	0.990 *	1.000 * 90.824) +	
	1.000 *	1.000 * 66.345) + =	156.272

Total of 2 streams to confluence:

Flow rates before confluence point:
 90.824 66.345

Maximum flow rates at confluence using above data:

156.782 156.272

Area of streams before confluence:

38.000 30.000

Effective area values after confluence:

67.523 68.000

Results of confluence:

Total flow rate = 156.782(CFS)
 Time of concentration = 19.791 min.
 Effective stream area after confluence = 67.523(Ac.)
 Stream Area average Pervious fraction(Ap) = 0.137
 Stream Area average soil loss rate(Fm) = 0.107(In/Hr)
 Study area (this main stream) = 68.00(Ac.)

++++++
 Process from Point/Station 33.000 to Point/Station 34.000
 *** PIPEFLOW TRAVEL TIME (User specified size) ***

Upstream point/station elevation = 1061.000(Ft.)
 Downstream point/station elevation = 1048.200(Ft.)
 Pipe length = 990.00(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 156.782(CFS)
 Given pipe size = 39.00 (In.)
 NOTE: Normal flow is pressure flow in user selected pipe size.
 The approximate hydraulic grade line above the pipe invert is
 31.202(Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 35.683(Ft.)
 Minor friction loss = 8.319(Ft.) K-factor = 1.50
 Pipe flow velocity = 18.90(Ft/s)
 Travel time through pipe = 0.87 min.
 Time of concentration (TC) = 20.66 min.

++++++
 Process from Point/Station 34.000 to Point/Station 34.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 67.523(Ac.)
 Runoff from this stream = 156.782(CFS)
 Time of concentration = 20.66 min.
 Rainfall intensity = 2.559(In/Hr)
 Area averaged loss rate (Fm) = 0.1074(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1368

++++++
 Process from Point/Station 723.000 to Point/Station 724.000
 **** INITIAL AREA EVALUATION ****

CONDOMINIUM subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.3500 Max loss rate(Fm)= 0.275 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1072.000(Ft.)
 Bottom (of initial area) elevation = 1066.600(Ft.)
 Difference in elevation = 5.400(Ft.)
 Slope = 0.00540 s(%)= 0.54
 $TC = k(0.360) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 16.212 min.
 Rainfall intensity = 2.960(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.816
 Subarea runoff = 12.085(CFS)
 Total initial stream area = 5.000(Ac.)
 Pervious area fraction = 0.350
 Initial area Fm value = 0.275 (In/Hr)

++++++
 Process from Point/Station 724.000 to Point/Station 725.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1066.600(Ft.)
 End of street segment elevation = 1063.000(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0 (In.)

Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 18.127(CFS)
 Depth of flow = 0.478(Ft.), Average velocity = 2.422(Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 19.159(Ft.)
 Flow velocity = 2.42(Ft/s)
 Travel time = 4.54 min. TC = 20.75 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.3500 Max loss rate(F_m) = 0.275(In/Hr)
 Rainfall intensity = 2.553(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.803$
 Subarea runoff = 8.415(CFS) for 5.000(Ac.)
 Total runoff = 20.500(CFS)
 Effective area this stream = 10.00(Ac.)
 Total Study Area (Main Stream No. 1) = 78.00(Ac.)
 Area averaged F_m value = 0.275(In/Hr)
 Street flow at end of street = 20.500(CFS)
 Half street flow at end of street = 10.250(CFS)
 Depth of flow = 0.496(Ft.), Average velocity = 2.501(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 725.000 to Point/Station 729.000
 *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 1063.000(Ft.)
 End of street segment elevation = 1056.600(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 42.000(Ft.)
 Distance from crown to crossfall grade break = 40.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150

111c

Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 20.500(CFS)
Depth of flow = 0.564(Ft.), Average velocity = 3.681(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 23.446(Ft.)
Flow velocity = 3.68(Ft/s)
Travel time = 2.99 min. TC = 23.74 min.
Adding area flow to street
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.079(In/Hr)
Rainfall intensity = 2.355(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.795$
Subarea runoff = 0.000(CFS) for 0.000(Ac.)
Total runoff = 20.500(CFS)
Effective area this stream = 10.00(Ac.)
Total Study Area (Main Stream No. 1) = 78.00(Ac.)
Area averaged F_m value = 0.275(In/Hr)
Street flow at end of street = 20.500(CFS)
Half street flow at end of street = 20.500(CFS)
Depth of flow = 0.564(Ft.), Average velocity = 3.681(Ft/s)
Flow width (from curb towards crown) = 23.446(Ft.)

++++++
Process from Point/Station 729.000 to Point/Station 729.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
Stream flow area = 10.000(Ac.)
Runoff from this stream = 20.500(CFS)
Time of concentration = 23.74 min.
Rainfall intensity = 2.355(In/Hr)
Area averaged loss rate (F_m) = 0.2748(In/Hr)
Area averaged Pervious ratio (A_p) = 0.3500

++++++
Process from Point/Station 726.000 to Point/Station 727.000
**** INITIAL AREA EVALUATION ****

CONDOMINIUM subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(A_p) = 0.3500 Max loss rate(F_m) = 0.275(In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1069.200(Ft.)
Bottom (of initial area) elevation = 1062.000(Ft.)
Difference in elevation = 7.200(Ft.)
Slope = 0.00720 s(%) = 0.72

TC = $k(0.360) * [(length^3) / (elevation change)]^{0.2}$
Initial area time of concentration = 15.305 min.
Rainfall intensity = 3.064 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.819
Subarea runoff = 12.552 (CFS)
Total initial stream area = 5.000 (Ac.)
Pervious area fraction = 0.350
Initial area Fm value = 0.275 (In/Hr)

+++++
Process from Point/Station 727.000 to Point/Station 728.000
*** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 1062.000 (Ft.)
End of street segment elevation = 1060.000 (Ft.)
Length of street segment = 330.000 (Ft.)
Height of curb above gutter flowline = 8.0 (In.)
Width of half street (curb to crown) = 20.000 (Ft.)
Distance from crown to crossfall grade break = 18.500 (Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000 (Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500 (Ft.)
Gutter hike from flowline = 1.500 (In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 18.829 (CFS)
Depth of flow = 0.476 (Ft.), Average velocity = 2.544 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 19.051 (Ft.)
Flow velocity = 2.54 (Ft/s)
Travel time = 2.16 min. TC = 17.47 min.
Adding area flow to street
CONDOMINIUM subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio (Ap) = 0.3500 Max loss rate (Fm) = 0.275 (In/Hr)
Rainfall intensity = 2.831 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.813
Subarea runoff = 10.450 (CFS) for 5.000 (Ac.)
Total runoff = 23.003 (CFS)
Effective area this stream = 10.00 (Ac.)
Total Study Area (Main Stream No. 1) = 88.00 (Ac.)
Area averaged Fm value = 0.275 (In/Hr)
Street flow at end of street = 23.003 (CFS)
Half street flow at end of street = 11.501 (CFS)
Depth of flow = 0.504 (Ft.), Average velocity = 2.703 (Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown) = 20.000 (Ft.)

+++++

Process from Point/Station 728.000 to Point/Station 729.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1060.000(Ft.)
 End of street segment elevation = 1056.600(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 34.504(CFS)
 Depth of flow = 0.577(Ft.), Average velocity = 3.023(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 3.02(Ft/s)
 Travel time = 3.64 min. TC = 21.11 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.3500 Max loss rate(F_m) = 0.275(In/Hr)
 Rainfall intensity = 2.527(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.802$
 Subarea runoff = 17.534(CFS) for 10.000(Ac.)
 Total runoff = 40.537(CFS)
 Effective area this stream = 20.00(Ac.)
 Total Study Area (Main Stream No. 1) = 98.00(Ac.)
 Area averaged F_m value = 0.275(In/Hr)
 Street flow at end of street = 40.537(CFS)
 Half street flow at end of street = 20.269(CFS)
 Depth of flow = 0.606(Ft.), Average velocity = 3.223(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 729.000 to Point/Station 729.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 20.000(Ac.)
 Runoff from this stream = 40.537(CFS)
 Time of concentration = 21.11 min.
 Rainfall intensity = 2.527(In/Hr)
 Area averaged loss rate (F_m) = 0.2748(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.3500

Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	156.782	20.66	2.559
2	20.500	23.74	2.355
3	40.537	21.11	2.527
$Q_{max}(1) =$			
	1.000 *	1.000 *	156.782) +
	1.098 *	0.870 *	20.500) +
	1.014 *	0.979 *	40.537) + = 216.636
$Q_{max}(2) =$			
	0.917 *	1.000 *	156.782) +
	1.000 *	1.000 *	20.500) +
	0.924 *	1.000 *	40.537) + = 201.640
$Q_{max}(3) =$			
	0.987 *	1.000 *	156.782) +
	1.083 *	0.889 *	20.500) +
	1.000 *	1.000 *	40.537) + = 214.987

Total of 3 streams to confluence:

Flow rates before confluence point:
 156.782 20.500 40.537

Maximum flow rates at confluence using above data:

216.636 201.640 214.987

Area of streams before confluence:

67.523 10.000 20.000

Effective area values after confluence:

95.807 97.523 96.413

Results of confluence:

Total flow rate = 216.636(CFS)

Time of concentration = 20.664 min.

Effective stream area after confluence = 95.807(Ac.)

Stream Area average Pervious fraction(Ap) = 0.202

Stream Area average soil loss rate(Fm) = 0.159(In/Hr)

Study area (this main stream) = 97.52(Ac.)

+++++
 Process from Point/Station 34.000 to Point/Station 35.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1048.200(Ft.)

Downstream point/station elevation = 1042.000(Ft.)

Pipe length = 660.00(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 216.636(CFS)

Given pipe size = 39.00(In.)

NOTE: Normal flow is pressure flow in user selected pipe size.

The approximate hydraulic grade line above the pipe invert is

55.103(Ft.) at the headworks or inlet of the pipe(s)

Pipe friction loss = 45.419(Ft.)

Minor friction loss = 15.884(Ft.) K-factor = 1.50

Pipe flow velocity = 26.11(Ft/s)

Travel time through pipe = 0.42 min.

Time of concentration (TC) = 21.08 min.

+++++
 Process from Point/Station 35.000 to Point/Station 35.000

***** CONFLUENCE OF MINOR STREAMS *****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 95.807(Ac.)
 Runoff from this stream = 216.636(CFS)
 Time of concentration = 21.08 min.
 Rainfall intensity = 2.528(In/Hr)
 Area averaged loss rate (Fm) = 0.1589(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.2024

+++++
 Process from Point/Station 730.000 to Point/Station 731.000
 **** INITIAL AREA EVALUATION ****

CONDOMINIUM subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.3500 Max loss rate(Fm)= 0.154(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1063.700(Ft.)
 Bottom (of initial area) elevation = 1055.800(Ft.)
 Difference in elevation = 7.900(Ft.)
 Slope = 0.00790 s(%)= 0.79
 $TC = k(0.360) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 15.024 min.
 Rainfall intensity = 3.099(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.855
 Subarea runoff = 13.251(CFS)
 Total initial stream area = 5.000(Ac.)
 Pervious area fraction = 0.350
 Initial area Fm value = 0.154(In/Hr)

+++++
 Process from Point/Station 731.000 to Point/Station 732.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1055.800(Ft.)
 End of street segment elevation = 1053.600(Ft.)
 Length of street segment = 330.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 19.876(CFS)
 Depth of flow = 0.477(Ft.), Average velocity = 2.672(Ft/s)

Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 19.099(Ft.)
 Flow velocity = 2.67(Ft/s)
 Travel time = 2.06 min. TC = 17.08 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.3500 Max loss rate(Fm)= 0.154 (In/Hr)
 Rainfall intensity = 2.869(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.852
 Subarea runoff = 11.183(CFS) for 5.000(Ac.)
 Total runoff = 24.434(CFS)
 Effective area this stream = 10.00(Ac.)
 Total Study Area (Main Stream No. 1) = 108.00(Ac.)
 Area averaged Fm value = 0.154 (In/Hr)
 Street flow at end of street = 24.434(CFS)
 Half street flow at end of street = 12.217(CFS)
 Depth of flow = 0.506(Ft.), Average velocity = 2.849(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown)= 20.000(Ft.)

+++++
 Process from Point/Station 732.000 to Point/Station 733.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1053.600(Ft.)
 End of street segment elevation = 1049.000(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 42.000(Ft.)
 Distance from crown to crossfall grade break = 40.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 36.650(CFS)
 Depth of flow = 0.728(Ft.), Average velocity = 3.604(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 3.05(Ft.)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 31.632(Ft.)
 Flow velocity = 3.60(Ft/s)
 Travel time = 3.05 min. TC = 20.13 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.3500 Max loss rate(Fm) = 0.275 (In/Hr)
 Rainfall intensity = 2.599 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.826$
 Subarea runoff = 18.495 (CFS) for 10.000 (Ac.)
 Total runoff = 42.929 (CFS)
 Effective area this stream = 20.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 118.00 (Ac.)
 Area averaged Fm value = 0.214 (In/Hr)
 Street flow at end of street = 42.929 (CFS)
 Half street flow at end of street = 42.929 (CFS)
 Depth of flow = 0.769 (Ft.), Average velocity = 3.673 (Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 5.11 (Ft.)
 Flow width (from curb towards crown) = 33.697 (Ft.)

++++++
 Process from Point/Station 733.000 to Point/Station 733.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 20.000 (Ac.)
 Runoff from this stream = 42.929 (CFS)
 Time of concentration = 20.13 min.
 Rainfall intensity = 2.599 (In/Hr)
 Area averaged loss rate (Fm) = 0.2144 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.3500
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	216.636	21.08	2.528
2	42.929	20.13	2.599
$Q_{max}(1) =$	1.000 * 0.970 *	216.636) + 42.929) + =	258.288
$Q_{max}(2) =$	1.030 * 1.000 *	216.636) + 42.929) + =	255.994

Total of 2 streams to confluence:
 Flow rates before confluence point:
 216.636 42.929

Maximum flow rates at confluence using above data:
 258.288 255.994

Area of streams before confluence:
 95.807 20.000

Effective area values after confluence:
 115.807 111.488

Results of confluence:
 Total flow rate = 258.288 (CFS)
 Time of concentration = 21.085 min.
 Effective stream area after confluence = 115.807 (Ac.)
 Stream Area average Pervious fraction(Ap) = 0.228
 Stream Area average soil loss rate(Fm) = 0.168 (In/Hr)

Study area (this main stream) = 115.81 (Ac.)
End of computations, Total Study Area = 118.00 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.

Area averaged pervious area fraction (A_p) = 0.227
Area averaged SCS curve number = 34.0

LINE "DZ-7"

San Bernardino County Rational Hydrology Program

(Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
Rational Hydrology Study Date: 01/07/05-----
FONTANA / LINE DZ-7 HYDROLOGY
100 YEAR STORM
JN 04339-----
Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
10 Year storm 1 hour rainfall = 0.930 (In.)
100 Year storm 1 hour rainfall = 1.350 (In.)
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.350 (In.)
Slope used for rainfall intensity curve b = 0.6000
Soil antecedent moisture condition (AMC) = 3+++++
Process from Point/Station 800.000 to Point/Station 801.000
**** INITIAL AREA EVALUATION ****-----
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.079 (In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000 (Ft.)
Top (of initial area) elevation = 1098.000 (Ft.)
Bottom (of initial area) elevation = 1088.000 (Ft.)
Difference in elevation = 10.000 (Ft.)
Slope = 0.01000 s(%) = 1.00
TC = $k(0.304) * [(length^3) / (elevation change)]^{0.2}$
Initial area time of concentration = 12.102 min.
Rainfall intensity = 3.528 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.880
Subarea runoff = 18.626 (CFS)
Total initial stream area = 6.000 (Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.079 (In/Hr)+++++
Process from Point/Station 801.000 to Point/Station 802.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****-----
Top of street segment elevation = 1088.000 (Ft.)
End of street segment elevation = 1081.000 (Ft.)

Length of street segment = 820.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 34.148(CFS)
 Depth of flow = 0.535(Ft.), Average velocity = 3.506(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 3.51(Ft/s)
 Travel time = 3.90 min. TC = 16.00 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Previous ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.079(In/Hr)
 Rainfall intensity = 2.984(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.876$
 Subarea runoff = 23.207(CFS) for 10.000(Ac.)
 Total runoff = 41.833(CFS)
 Effective area this stream = 16.00(Ac.)
 Total Study Area (Main Stream No. 1) = 16.00(Ac.)
 Area averaged F_m value = 0.079(In/Hr)
 Street flow at end of street = 41.833(CFS)
 Half street flow at end of street = 20.917(CFS)
 Depth of flow = 0.567(Ft.), Average velocity = 3.800(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 802.000 to Point/Station 803.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1081.000(Ft.)
 End of street segment elevation = 1075.000(Ft.)
 Length of street segment = 620.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 42.000(Ft.)
 Distance from crown to crossfall grade break = 40.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)

Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 67.979 (CFS)
 Depth of flow = 0.846 (Ft.), Average velocity = 4.535 (Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 8.98 (Ft.)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 37.567 (Ft.)
 Flow velocity = 4.53 (Ft/s)
 Travel time = 2.28 min. TC = 18.28 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Previous ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.079 (In/Hr)
 Rainfall intensity = 2.755 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) (Q=KCIA) is C = 0.874
 Subarea runoff = 44.869 (CFS) for 20.000 (Ac.)
 Total runoff = 86.703 (CFS)
 Effective area this stream = 36.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 36.00 (Ac.)
 Area averaged Fm value = 0.079 (In/Hr)
 Street flow at end of street = 86.703 (CFS)
 Half street flow at end of street = 86.703 (CFS)
 Depth of flow = 0.912 (Ft.), Average velocity = 4.743 (Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 12.28 (Ft.)
 Flow width (from curb towards crown) = 40.864 (Ft.)

++++++
 Process from Point/Station 803.000 to Point/Station 36.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1069.000 (Ft.)
 Downstream point/station elevation = 1054.000 (Ft.)
 Pipe length = 990.00 (Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 86.703 (CFS)
 Given pipe size = 36.00 (In.)
 Calculated individual pipe flow = 86.703 (CFS)
 Normal flow depth in pipe = 31.78 (In.)
 Flow top width inside pipe = 23.16 (In.)
 Critical Depth = 33.89 (In.)
 Pipe flow velocity = 13.13 (Ft/s)
 Travel time through pipe = 1.26 min.
 Time of concentration (TC) = 19.54 min.

++++++
 Process from Point/Station 36.000 to Point/Station 36.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 36.000 (Ac.)

Runoff from this stream = 86.703(CFS)
 Time of concentration = 19.54 min.
 Rainfall intensity = 2.647 (In/Hr)
 Area averaged loss rate (Fm) = 0.0785 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1000

+++++
 Process from Point/Station 804.000 to Point/Station 805.000
 **** INITIAL AREA EVALUATION ****

COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.079 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1081.500 (Ft.)
 Bottom (of initial area) elevation = 1071.000 (Ft.)
 Difference in elevation = 10.500 (Ft.)
 Slope = 0.01050 s(%) = 1.05
 $TC = k(0.304) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 11.985 min.
 Rainfall intensity = 3.548 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.880
 Subarea runoff = 15.615 (CFS)
 Total initial stream area = 5.000 (Ac.)
 Pervious area fraction = 0.100
 Initial area Fm value = 0.079 (In/Hr)

+++++
 Process from Point/Station 805.000 to Point/Station 806.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1071.000 (Ft.)
 End of street segment elevation = 1069.000 (Ft.)
 Length of street segment = 660.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 31.230 (CFS)
 Depth of flow = 0.607 (Ft.), Average velocity = 2.476 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 2.48 (Ft/s)

Travel time = 4.44 min. TC = 16.43 min.
 Adding area flow to street
 COMMERCIAL subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.1000 Max loss rate(F_m) = 0.079 (In/Hr)
 Rainfall intensity = 2.937 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.876$
 Subarea runoff = 22.972 (CFS) for 10.000 (Ac.)
 Total runoff = 38.587 (CFS)
 Effective area this stream = 15.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 51.00 (Ac.)
 Area averaged F_m value = 0.079 (In/Hr)
 Street flow at end of street = 38.587 (CFS)
 Half street flow at end of street = 19.294 (CFS)
 Depth of flow = 0.650 (Ft.), Average velocity = 2.692 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

++++++
 Process from Point/Station 806.000 to Point/Station 807.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1069.000 (Ft.)
 End of street segment elevation = 1065.000 (Ft.)
 Length of street segment = 330.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 45.018 (CFS)
 Depth of flow = 0.550 (Ft.), Average velocity = 4.349 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 4.35 (Ft/s)
 Travel time = 1.26 min. TC = 17.69 min.
 Adding area flow to street
 RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.393 (In/Hr)

Rainfall intensity = 2.809 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.850
 Subarea runoff = 9.148 (CFS) for 5.000 (Ac.)
 Total runoff = 47.735 (CFS)
 Effective area this stream = 20.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 56.00 (Ac.)
 Area averaged Fm value = 0.157 (In/Hr)
 Street flow at end of street = 47.735 (CFS)
 Half street flow at end of street = 23.868 (CFS)
 Depth of flow = 0.560 (Ft.), Average velocity = 4.451 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.00 (Ft.)

+++++
 Process from Point/Station 807.000 to Point/Station 808.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1065.000 (Ft.)
 End of street segment elevation = 1060.000 (Ft.)
 Length of street segment = 330.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 42.000 (Ft.)
 Distance from crown to crossfall grade break = 40.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 59.669 (CFS)
 Depth of flow = 0.754 (Ft.), Average velocity = 5.374 (Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 4.35 (Ft.)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 32.929 (Ft.)
 Flow velocity = 5.37 (Ft/s)
 Travel time = 1.02 min. TC = 18.72 min.
 Adding area flow to street
 RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Previous ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.393 (In/Hr)
 Rainfall intensity = 2.716 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.822
 Subarea runoff = 19.231 (CFS) for 10.000 (Ac.)
 Total runoff = 66.967 (CFS)
 Effective area this stream = 30.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 66.00 (Ac.)
 Area averaged Fm value = 0.236 (In/Hr)
 Street flow at end of street = 66.967 (CFS)

Half street flow at end of street = 66.967(CFS)
 Depth of flow = 0.784(Ft.), Average velocity = 5.459(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 5.85(Ft.)
 Flow width (from curb towards crown) = 34.430(Ft.)

+++++
 Process from Point/Station 808.000 to Point/Station 808.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 30.000(Ac.)
 Runoff from this stream = 66.967(CFS)
 Time of concentration = 18.72 min.
 Rainfall intensity = 2.716(In/Hr)
 Area averaged loss rate (Fm) = 0.2355(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.3000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	86.703	19.54	2.647
2	66.967	18.72	2.716
Qmax(1) =	1.000 * 0.972 *	1.000 * 66.967)	86.703) + + = 151.806
Qmax(2) =	1.027 * 1.000 *	0.958 * 66.967)	86.703) + + = 152.261

Total of 2 streams to confluence:

Flow rates before confluence point:

86.703 66.967

Maximum flow rates at confluence using above data:

151.806 152.261

Area of streams before confluence:

36.000 30.000

Effective area values after confluence:

66.000 64.488

Results of confluence:

Total flow rate = 152.261(CFS)

Time of concentration = 18.716 min.

Effective stream area after confluence = 64.488(Ac.)

Stream Area average Pervious fraction(Ap) = 0.191

Stream Area average soil loss rate(Fm) = 0.150(In/Hr)

Study area (this main stream) = 66.00(Ac.)

+++++
 Process from Point/Station 36.000 to Point/Station 37.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1054.000(Ft.)

Downstream point/station elevation = 1043.500(Ft.)

Pipe length = 990.00(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 152.261(CFS)

Given pipe size = 42.00(In.)

NOTE: Normal flow is pressure flow in user selected pipe size.

The approximate hydraulic grade line above the pipe invert is
 18.000(Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 22.667(Ft.)
 Minor friction loss = 5.834(Ft.) K-factor = 1.50
 Pipe flow velocity = 15.83(Ft/s)
 Travel time through pipe = 1.04 min.
 Time of concentration (TC) = 19.76 min.

++++++
 Process from Point/Station 37.000 to Point/Station 37.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 64.488(Ac.)
 Runoff from this stream = 152.261(CFS)
 Time of concentration = 19.76 min.
 Rainfall intensity = 2.629(In/Hr)
 Area averaged loss rate (Fm) = 0.1499(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1909

++++++
 Process from Point/Station 809.000 to Point/Station 810.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.393(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1068.000(Ft.)
 Bottom (of initial area) elevation = 1061.000(Ft.)
 Difference in elevation = 7.000(Ft.)
 Slope = 0.00700 s(%)= 0.70
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 16.631 min.
 Rainfall intensity = 2.915(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.779
 Subarea runoff = 11.352(CFS)
 Total initial stream area = 5.000(Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.393(In/Hr)

++++++
 Process from Point/Station 810.000 to Point/Station 811.000
 *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 1061.000(Ft.)
 End of street segment elevation = 1057.000(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020

Slope from grade break to crown (v/Hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 17.028(CFS)
 Depth of flow = 0.462(Ft.), Average velocity = 2.481(Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 18.330(Ft.)
 Flow velocity = 2.48(Ft/s)
 Travel time = 4.43 min. TC = 21.06 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.393(In/Hr)
 Rainfall intensity = 2.530(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.760$
 Subarea runoff = 7.884(CFS) for 5.000(Ac.)
 Total runoff = 19.236(CFS)
 Effective area this stream = 10.00(Ac.)
 Total Study Area (Main Stream No. 1) = 76.00(Ac.)
 Area averaged F_m value = 0.393(In/Hr)
 Street flow at end of street = 19.236(CFS)
 Half street flow at end of street = 9.618(CFS)
 Depth of flow = 0.479(Ft.), Average velocity = 2.557(Ft/s)
 Flow width (from curb towards crown) = 19.208(Ft.)

++++++
 Process from Point/Station 811.000 to Point/Station 812.000
 *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 1057.000(Ft.)
 End of street segment elevation = 1051.000(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 42.000(Ft.)
 Distance from crown to crossfall grade break = 40.500(Ft.)
 Slope from gutter to grade break (v/Hz) = 0.020
 Slope from grade break to crown (v/Hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000(Ft.)
 Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 38.471(CFS)
 Depth of flow = 0.705(Ft.), Average velocity = 4.085(Ft/s)
 Warning: depth of flow exceeds top of curb

Distance that curb overflow reaches into property = 1.93(Ft.)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 30.512(Ft.)
 Flow velocity = 4.08(Ft/s)
 Travel time = 2.69 min. TC = 23.76 min.
 Adding area flow to street
 SCHOOL subarea
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm) = 0.471(In/Hr)
 Rainfall intensity = 2.354(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.730$
 Subarea runoff = 32.301(CFS) for 20.000(Ac.)
 Total runoff = 51.536(CFS)
 Effective area this stream = 30.00(Ac.)
 Total Study Area (Main Stream No. 1) = 96.00(Ac.)
 Area averaged Fm value = 0.445(In/Hr)
 Street flow at end of street = 51.536(CFS)
 Half street flow at end of street = 51.536(CFS)
 Depth of flow = 0.782(Ft.), Average velocity = 4.224(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 5.76(Ft.)
 Flow width (from curb towards crown)= 34.346(Ft.)

++++++
 Process from Point/Station 812.000 to Point/Station 812.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 30.000(Ac.)
 Runoff from this stream = 51.536(CFS)
 Time of concentration = 23.76 min.
 Rainfall intensity = 2.354(In/Hr)
 Area averaged loss rate (Fm) = 0.4449(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5667
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	152.261	19.76	2.629
2	51.536	23.76	2.354
$Q_{max}(1) =$			
	1.000 * 1.000 * 152.261) +		
	1.144 * 0.832 * 51.536) + =		201.303
$Q_{max}(2) =$			
	0.889 * 1.000 * 152.261) +		
	1.000 * 1.000 * 51.536) + =		186.893

Total of 2 streams to confluence:
 Flow rates before confluence point:
 152.261 51.536
 Maximum flow rates at confluence using above data:
 201.303 186.893

Area of streams before confluence:

64.488 30.000

Effective area values after confluence:

89.439 94.488

Results of confluence:

Total flow rate = 201.303(CFS)

Time of concentration = 19.759 min.

Effective stream area after confluence = 89.439(Ac.)

Stream Area average Pervious fraction(Ap) = 0.310

Stream Area average soil loss rate(Fm) = 0.244(In/Hr)

Study area (this main stream) = 94.49(Ac.)

+++++
Process from Point/Station 37.000 to Point/Station 38.000

**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1043.500(Ft.)

Downstream point/station elevation = 1038.000(Ft.)

Pipe length = 660.00(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 201.303(CFS)

Given pipe size = 42.00(In.)

NOTE: Normal flow is pressure flow in user selected pipe size.

The approximate hydraulic grade line above the pipe invert is
31.110(Ft.) at the headworks or inlet of the pipe(s)

Pipe friction loss = 26.413(Ft.)

Minor friction loss = 10.197(Ft.) K-factor = 1.50

Pipe flow velocity = 20.92(Ft/s)

Travel time through pipe = 0.53 min.

Time of concentration (TC) = 20.28 min.

+++++
Process from Point/Station 38.000 to Point/Station 38.000

**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1

Stream flow area = 89.439(Ac.)

Runoff from this stream = 201.303(CFS)

Time of concentration = 20.28 min.

Rainfall intensity = 2.588(In/Hr)

Area averaged loss rate (Fm) = 0.2436(In/Hr)

Area averaged Pervious ratio (Ap) = 0.3102

+++++
Process from Point/Station 813.000 to Point/Station 814.000

**** INITIAL AREA EVALUATION ****

CONDOMINIUM subarea type

Decimal fraction soil group A = 1.000

Decimal fraction soil group B = 0.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil(AMC 2) = 32.00

Adjusted SCS curve number for AMC 3 = 52.00

Pervious ratio(Ap) = 0.3500 Max loss rate(Fm) = 0.275(In/Hr)

Initial subarea data:

Initial area flow distance = 1000.000(Ft.)

Top (of initial area) elevation = 1056.600(Ft.)

Bottom (of initial area) elevation = 1048.500(Ft.)

Difference in elevation = 8.100(Ft.)
 Slope = 0.00810 s(%)= 0.81
 $TC = k(0.360) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 14.949 min.
 Rainfall intensity = 3.108(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.820
 Subarea runoff = 12.749(CFS)
 Total initial stream area = 5.000(Ac.)
 Pervious area fraction = 0.350
 Initial area Fm value = 0.275(In/Hr)

++++++
 Process from Point/Station 814.000 to Point/Station 815.000
 *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 1048.500(Ft.)
 End of street segment elevation = 1047.300(Ft.)
 Length of street segment = 330.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 19.123(CFS)
 Depth of flow = 0.513(Ft.), Average velocity = 2.153(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.15(Ft/s)
 Travel time = 2.55 min. TC = 17.50 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.3500 Max loss rate(Fm)= 0.275(In/Hr)
 Rainfall intensity = 2.827(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method)(Q=KCIA) is C = 0.813
 Subarea runoff = 10.223(CFS) for 5.000(Ac.)
 Total runoff = 22.971(CFS)
 Effective area this stream = 10.00(Ac.)
 Total Study Area (Main Stream No. 1) = 106.00(Ac.)
 Area averaged Fm value = 0.275(In/Hr)
 Street flow at end of street = 22.971(CFS)
 Half street flow at end of street = 11.486(CFS)
 Depth of flow = 0.539(Ft.), Average velocity = 2.316(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown)= 20.000(Ft.)

+++++
 Process from Point/Station 815.000 to Point/Station 816.000
 *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 1047.300(Ft.)
 End of street segment elevation = 1045.000(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/Hz) = 0.020
 Slope from grade break to crown (v/Hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 34.457(CFS)
 Depth of flow = 0.612(Ft.), Average velocity = 2.685(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.69(Ft/s)
 Travel time = 4.10 min. TC = 21.60 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.3500 Max loss rate(F_m) = 0.275(In/Hr)
 Rainfall intensity = 2.492(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.801$
 Subarea runoff = 16.939(CFS) for 10.000(Ac.)
 Total runoff = 39.910(CFS)
 Effective area this stream = 20.00(Ac.)
 Total Study Area (Main Stream No. 1) = 116.00(Ac.)
 Area averaged F_m value = 0.275(In/Hr)
 Street flow at end of street = 39.910(CFS)
 Half street flow at end of street = 19.955(CFS)
 Depth of flow = 0.642(Ft.), Average velocity = 2.846(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 816.000 to Point/Station 816.000
 *** CONFLUENCE OF MINOR STREAMS ***

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 20.000(Ac.)
 Runoff from this stream = 39.910(CFS)
 Time of concentration = 21.60 min.

Rainfall intensity = 2.492 (In/Hr)
 Area averaged loss rate (Fm) = 0.2748 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.3500
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	201.303	20.28	2.588
2	39.910	21.60	2.492
$Q_{max}(1) =$	1.000 * 1.043 *	201.303) + 39.910) + =	240.401
$Q_{max}(2) =$	0.959 * 1.000 *	201.303) + 39.910) + =	232.992

Total of 2 streams to confluence:

Flow rates before confluence point:
 201.303 39.910

Maximum flow rates at confluence using above data:

240.401 232.992

Area of streams before confluence:

89.439 20.000

Effective area values after confluence:

108.221 109.439

Results of confluence:

Total flow rate = 240.401 (CFS)

Time of concentration = 20.284 min.

Effective stream area after confluence = 108.221 (Ac.)

Stream Area average Pervious fraction (Ap) = 0.317

Stream Area average soil loss rate (Fm) = 0.249 (In/Hr)

Study area (this main stream) = 109.44 (Ac.)

End of computations, Total Study Area = 116.00 (Ac.)

The following figures may

be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction (Ap) = 0.316

Area averaged SCS curve number = 32.0

LINE "DZ-5"

San Bernardino County Rational Hydrology Program

(Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
Rational Hydrology Study Date: 01/07/05-----
FONTANA / LINE DZ-5 HYDROLOGY
100 YEAR STORM
JN 04339-----
Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
10 Year storm 1 hour rainfall = 0.930 (In.)
100 Year storm 1 hour rainfall = 1.350 (In.)
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.350 (In.)
Slope used for rainfall intensity curve b = 0.6000
Soil antecedent moisture condition (AMC) = 3+++++
Process from Point/Station 700.000 to Point/Station 701.000
**** INITIAL AREA EVALUATION ****-----
CONDOMINIUM subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio (Ap) = 0.3500 Max loss rate (Fm) = 0.275 (In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000 (Ft.)
Top (of initial area) elevation = 1104.000 (Ft.)
Bottom (of initial area) elevation = 1096.700 (Ft.)
Difference in elevation = 7.300 (Ft.)
Slope = 0.00730 s(%) = 0.73
TC = $k(0.360) * [(length^3) / (elevation change)]^{0.2}$
Initial area time of concentration = 15.263 min.
Rainfall intensity = 3.069 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.819
Subarea runoff = 12.575 (CFS)
Total initial stream area = 5.000 (Ac.)
Pervious area fraction = 0.350
Initial area Fm value = 0.275 (In/Hr)+++++
Process from Point/Station 701.000 to Point/Station 702.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****-----
Top of street segment elevation = 1096.700 (Ft.)
End of street segment elevation = 1095.000 (Ft.)

Length of street segment = 330.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 18.863(CFS)
 Depth of flow = 0.488(Ft.), Average velocity = 2.394(Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 19.668(Ft.)
 Flow velocity = 2.39(Ft/s)
 Travel time = 2.30 min. TC = 17.56 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.3500 Max loss rate(F_m) = 0.275(In/Hr)
 Rainfall intensity = 2.822(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.812$
 Subarea runoff = 10.346(CFS) for 5.000(Ac.)
 Total runoff = 22.922(CFS)
 Effective area this stream = 10.00(Ac.)
 Total Study Area (Main Stream No. 1) = 10.00(Ac.)
 Area averaged F_m value = 0.275(In/Hr)
 Street flow at end of street = 22.922(CFS)
 Half street flow at end of street = 11.461(CFS)
 Depth of flow = 0.514(Ft.), Average velocity = 2.570(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 702.000 to Point/Station 703.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1095.000(Ft.)
 End of street segment elevation = 1092.000(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)

Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 34.383(CFS)
 Depth of flow = 0.587(Ft.), Average velocity = 2.907(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.91(Ft/s)
 Travel time = 3.78 min. TC = 21.34 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Previous ratio(A_p) = 0.3500 Max loss rate(F_m) = 0.275(In/Hr)
 Rainfall intensity = 2.510(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.801$
 Subarea runoff = 17.310(CFS) for 10.000(Ac.)
 Total runoff = 40.232(CFS)
 Effective area this stream = 20.00(Ac.)
 Total Study Area (Main Stream No. 1) = 20.00(Ac.)
 Area averaged F_m value = 0.275(In/Hr)
 Street flow at end of street = 40.232(CFS)
 Half street flow at end of street = 20.116(CFS)
 Depth of flow = 0.617(Ft.), Average velocity = 3.094(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

++++++
 Process from Point/Station 703.000 to Point/Station 704.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1092.000(Ft.)
 End of street segment elevation = 1082.000(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 42.000(Ft.)
 Distance from crown to crossfall grade break = 40.500(Ft.)
 Slope from gutter to grade break (v/Hz) = 0.020
 Slope from grade break to crown (v/Hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000(Ft.)
 Slope from curb to property line (v/Hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 60.347(CFS)
 Depth of flow = 0.757(Ft.), Average velocity = 5.382(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 4.49(Ft.)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 33.076(Ft.)
 Flow velocity = 5.38(Ft/s)

Travel time = 2.04 min. TC = 23.39 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.3500 Max loss rate(Fm) = 0.275 (In/Hr)
 Rainfall intensity = 2.376 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.796$
 Subarea runoff = 35.407 (CFS) for 20.000 (Ac.)
 Total runoff = 75.639 (CFS)
 Effective area this stream = 40.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 40.00 (Ac.)
 Area averaged Fm value = 0.275 (In/Hr)
 Street flow at end of street = 75.639 (CFS)
 Half street flow at end of street = 75.639 (CFS)
 Depth of flow = 0.815 (Ft.), Average velocity = 5.563 (Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 7.44 (Ft.)
 Flow width (from curb towards crown) = 36.019 (Ft.)

++++++
 Process from Point/Station 704.000 to Point/Station 30.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1076.000 (Ft.)
 Downstream point/station elevation = 1066.000 (Ft.)
 Pipe length = 1000.00 (Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 75.639 (CFS)
 Given pipe size = 36.00 (In.)
 NOTE: Normal flow is pressure flow in user selected pipe size.
 The approximate hydraulic grade line above the pipe invert is
 5.523 (Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 12.856 (Ft.)
 Minor friction loss = 2.667 (Ft.) K-factor = 1.50
 Pipe flow velocity = 10.70 (Ft/s)
 Travel time through pipe = 1.56 min.
 Time of concentration (TC) = 24.95 min.

++++++
 Process from Point/Station 30.000 to Point/Station 30.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 40.000 (Ac.)
 Runoff from this stream = 75.639 (CFS)
 Time of concentration = 24.95 min.
 Rainfall intensity = 2.286 (In/Hr)
 Area averaged loss rate (Fm) = 0.2748 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.3500

++++++
 Process from Point/Station 705.000 to Point/Station 706.000
 **** INITIAL AREA EVALUATION ****

CONDOMINIUM subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(A_p) = 0.3500 Max loss rate(F_m) = 0.275 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1085.700 (Ft.)
 Bottom (of initial area) elevation = 1075.300 (Ft.)
 Difference in elevation = 10.400 (Ft.)
 Slope = 0.01040 s(%) = 1.04
 $TC = k(0.360) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 14.220 min.
 Rainfall intensity = 3.202 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area ($Q=KCIA$) is $C = 0.823$
 Subarea runoff = 26.349 (CFS)
 Total initial stream area = 10.000 (Ac.)
 Pervious area fraction = 0.350
 Initial area F_m value = 0.275 (In/Hr)

+++++
 Process from Point/Station 706.000 to Point/Station 707.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1075.300 (Ft.)
 End of street segment elevation = 1072.000 (Ft.)
 Length of street segment = 330.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 36.230 (CFS)
 Depth of flow = 0.532 (Ft.), Average velocity = 3.765 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000 (Ft.)
 Flow velocity = 3.76 (Ft/s)
 Travel time = 1.46 min. $TC = 15.68$ min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.220 (In/Hr)

Rainfall intensity = 3.020 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.825$
 Subarea runoff = 17.257 (CFS) for 7.500 (Ac.)
 Total runoff = 43.607 (CFS)
 Effective area this stream = 17.50 (Ac.)
 Total Study Area (Main Stream No. 1) = 57.50 (Ac.)
 Area averaged Fm value = 0.251 (In/Hr)
 Street flow at end of street = 43.607 (CFS)
 Half street flow at end of street = 21.803 (CFS)
 Depth of flow = 0.560 (Ft.), Average velocity = 4.052 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

+++++
 Process from Point/Station 707.000 to Point/Station 707.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 17.500 (Ac.)
 Runoff from this stream = 43.607 (CFS)
 Time of concentration = 15.68 min.
 Rainfall intensity = 3.020 (In/Hr)
 Area averaged loss rate (Fm) = 0.2513 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.4143
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	75.639	24.95	2.286
2	43.607	15.68	3.020
$Q_{max}(1) =$	1.000 * 0.735 *	1.000 * 43.607)	75.639) + + = 107.681
$Q_{max}(2) =$	1.365 * 1.000 *	0.629 * 1.000 *	75.639) + + = 108.513

Total of 2 streams to confluence:
 Flow rates before confluence point:
 75.639 43.607
 Maximum flow rates at confluence using above data:
 107.681 108.513
 Area of streams before confluence:
 40.000 17.500
 Effective area values after confluence:
 57.500 42.644
 Results of confluence:
 Total flow rate = 108.513 (CFS)
 Time of concentration = 15.681 min.
 Effective stream area after confluence = 42.644 (Ac.)
 Stream Area average Pervious fraction (Ap) = 0.370
 Stream Area average soil loss rate (Fm) = 0.268 (In/Hr)
 Study area (this main stream) = 57.50 (Ac.)

+++++
 Process from Point/Station 30.000 to Point/Station 31.000

***** PIPEFLOW TRAVEL TIME (User specified size) *****

Upstream point/station elevation = 1066.000(Ft.)

Downstream point/station elevation = 1062.200(Ft.)

Pipe length = 990.00(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 108.513(CFS)

Given pipe size = 39.00(In.)

NOTE: Normal flow is pressure flow in user selected pipe size.

The approximate hydraulic grade line above the pipe invert is
17.279(Ft.) at the headworks or inlet of the pipe(s)

Pipe friction loss = 17.093(Ft.)

Minor friction loss = 3.985(Ft.) K-factor = 1.50

Pipe flow velocity = 13.08(Ft/s)

Travel time through pipe = 1.26 min.

Time of concentration (TC) = 16.94 min.

+++++
Process from Point/Station 31.000 to Point/Station 31.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1

Stream flow area = 42.644(Ac.)

Runoff from this stream = 108.513(CFS)

Time of concentration = 16.94 min.

Rainfall intensity = 2.883(In/Hr)

Area averaged loss rate (Fm) = 0.2676(In/Hr)

Area averaged Pervious ratio (Ap) = 0.3696

+++++
Process from Point/Station 708.000 to Point/Station 709.000
**** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)

Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 1.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 0.000

SCS curve number for soil(AMC 2) = 56.00

Adjusted SCS curve number for AMC 3 = 75.80

Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220(In/Hr)

Initial subarea data:

Initial area flow distance = 1000.000(Ft.)

Top (of initial area) elevation = 1072.000(Ft.)

Bottom (of initial area) elevation = 1069.200(Ft.)

Difference in elevation = 2.800(Ft.)

Slope = 0.00280 s(%) = 0.28

TC = $k(0.389) * [(length^3) / (elevation change)]^{0.2}$

Initial area time of concentration = 19.976 min.

Rainfall intensity = 2.612(In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area (Q=KCIA) is C = 0.824

Subarea runoff = 16.144(CFS)

Total initial stream area = 7.500(Ac.)

Pervious area fraction = 0.500

Initial area Fm value = 0.220(In/Hr)

+++++
Process from Point/Station 709.000 to Point/Station 710.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1069.200(Ft.)
 End of street segment elevation = 1062.600(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 42.000(Ft.)
 Distance from crown to crossfall grade break = 40.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 37.669(CFS)
 Depth of flow = 0.687(Ft.), Average velocity = 4.266(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 1.00(Ft.)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 29.579(Ft.)
 Flow velocity = 4.27(Ft/s)
 Travel time = 2.58 min. TC = 22.56 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.220(In/Hr)
 Rainfall intensity = 2.428(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.818$
 Subarea runoff = 38.509(CFS) for 20.000(Ac.)
 Total runoff = 54.653(CFS)
 Effective area this stream = 27.50(Ac.)
 Total Study Area (Main Stream No. 1) = 85.00(Ac.)
 Area averaged F_m value = 0.220(In/Hr)
 Street flow at end of street = 54.653(CFS)
 Half street flow at end of street = 54.653(CFS)
 Depth of flow = 0.785(Ft.), Average velocity = 4.438(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 5.91(Ft.)
 Flow width (from curb towards crown) = 34.489(Ft.)

+++++
 Process from Point/Station 710.000 to Point/Station 710.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 27.500(Ac.)
 Runoff from this stream = 54.653(CFS)
 Time of concentration = 22.56 min.
 Rainfall intensity = 2.428(In/Hr)
 Area averaged loss rate (F_m) = 0.2200(In/Hr)
 Area averaged Pervious ratio (A_p) = 0.5000

Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	108.513	16.94	2.883
2	54.653	22.56	2.428
$Q_{max}(1) =$	1.000 *	1.000 *	$108.513) +$
	1.206 *	0.751 *	$54.653) + = 158.021$
$Q_{max}(2) =$	0.826 *	1.000 *	$108.513) +$
	1.000 *	1.000 *	$54.653) + = 144.295$

Total of 2 streams to confluence:

Flow rates before confluence point:

108.513 54.653

Maximum flow rates at confluence using above data:

158.021 144.295

Area of streams before confluence:

42.644 27.500

Effective area values after confluence:

63.300 70.144

Results of confluence:

Total flow rate = 158.021(CFS)

Time of concentration = 16.942 min.

Effective stream area after confluence = 63.300(Ac.)

Stream Area average Pervious fraction(Ap) = 0.421

Stream Area average soil loss rate(Fm) = 0.249(In/Hr)

Study area (this main stream) = 70.14(Ac.)

+++++
Process from Point/Station 31.000 to Point/Station 32.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1056.600(Ft.)

Downstream point/station elevation = 1052.000(Ft.)

Pipe length = 660.00(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 158.021(CFS)

Given pipe size = 39.00(In.)

NOTE: Normal flow is pressure flow in user selected pipe size.

The approximate hydraulic grade line above the pipe invert is
28.017(Ft.) at the headworks or inlet of the pipe(s)

Pipe friction loss = 24.166(Ft.)

Minor friction loss = 8.451(Ft.) K-factor = 1.50

Pipe flow velocity = 19.05(Ft/s)

Travel time through pipe = 0.58 min.

Time of concentration (TC) = 17.52 min.

+++++
Process from Point/Station 32.000 to Point/Station 32.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1

Stream flow area = 63.300(Ac.)

Runoff from this stream = 158.021(CFS)

Time of concentration = 17.52 min.

Rainfall intensity = 2.826(In/Hr)

Area averaged loss rate (Fm) = 0.2490 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.4207

+++++
 Process from Point/Station 711.000 to Point/Station 712.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.220 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1069.600 (Ft.)
 Bottom (of initial area) elevation = 1062.100 (Ft.)
 Difference in elevation = 7.500 (Ft.)
 Slope = 0.00750 s(%) = 0.75
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 16.404 min.
 Rainfall intensity = 2.939 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.833
 Subarea runoff = 12.238 (CFS)
 Total initial stream area = 5.000 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.220 (In/Hr)

+++++
 Process from Point/Station 712.000 to Point/Station 713.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1062.100 (Ft.)
 End of street segment elevation = 1058.000 (Ft.)
 Length of street segment = 990.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 42.000 (Ft.)
 Distance from crown to crossfall grade break = 40.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 30.594 (CFS)
 Depth of flow = 0.749 (Ft.), Average velocity = 2.803 (Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 4.09 (Ft.)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 32.675 (Ft.)
 Flow velocity = 2.80 (Ft/s)
 Travel time = 5.89 min. TC = 22.29 min.
 Adding area flow to street

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 56.00
 Adjusted SCS curve number for AMC 3 = 75.80
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.220 (In/Hr)
 Rainfall intensity = 2.445 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.819$
 Subarea runoff = 27.821 (CFS) for 15.000 (Ac.)
 Total runoff = 40.058 (CFS)
 Effective area this stream = 20.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 105.00 (Ac.)
 Area averaged Fm value = 0.220 (In/Hr)
 Street flow at end of street = 40.058 (CFS)
 Half street flow at end of street = 40.058 (CFS)
 Depth of flow = 0.819 (Ft.), Average velocity = 2.914 (Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 7.60 (Ft.)
 Flow width (from curb towards crown) = 36.188 (Ft.)

++++++
 Process from Point/Station 713.000 to Point/Station 713.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 20.000 (Ac.)
 Runoff from this stream = 40.058 (CFS)
 Time of concentration = 22.29 min.
 Rainfall intensity = 2.445 (In/Hr)
 Area averaged loss rate (Fm) = 0.2200 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	158.021	17.52	2.826
2	40.058	22.29	2.445
$Q_{max}(1) =$	1.000 * 1.000 * 158.021) + 1.171 * 0.786 * 40.058) + =		194.884
$Q_{max}(2) =$	0.852 * 1.000 * 158.021) + 1.000 * 1.000 * 40.058) + =		174.764

Total of 2 streams to confluence:
 Flow rates before confluence point:
 158.021 40.058
 Maximum flow rates at confluence using above data:
 194.884 174.764
 Area of streams before confluence:
 63.300 20.000
 Effective area values after confluence:
 79.020 83.300
 Results of confluence:
 Total flow rate = 194.884 (CFS)

Time of concentration = 17.520 min.
 Effective stream area after confluence = 79.020 (Ac.)
 Stream Area average Pervious fraction(Ap) = 0.440
 Stream Area average soil loss rate(Fm) = 0.242 (In/Hr)
 Study area (this main stream) = 83.30 (Ac.)

+++++
 Process from Point/Station 32.000 to Point/Station 35.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1052.000 (Ft.)
 Downstream point/station elevation = 1041.000 (Ft.)
 Pipe length = 1320.00 (Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 194.884 (CFS)
 Given pipe size = 51.00 (In.)
 NOTE: Normal flow is pressure flow in user selected pipe size.
 The approximate hydraulic grade line above the pipe invert is
 10.975 (Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 17.579 (Ft.)
 Minor friction loss = 4.396 (Ft.) K-factor = 1.50
 Pipe flow velocity = 13.74 (Ft/s)
 Travel time through pipe = 1.60 min.
 Time of concentration (TC) = 19.12 min.

+++++
 Process from Point/Station 35.000 to Point/Station 35.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 79.020 (Ac.)
 Runoff from this stream = 194.884 (CFS)
 Time of concentration = 19.12 min.
 Rainfall intensity = 2.681 (In/Hr)
 Area averaged loss rate (Fm) = 0.2420 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.4397

+++++
 Process from Point/Station 35.000 to Point/Station 35.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil (AMC 2) = 75.62
 Adjusted SCS curve number for AMC 3 = 91.37
 Pervious ratio(Ap) = 0.2280 Max loss rate(Fm) = 0.038 (In/Hr)
 Rainfall intensity = 2.528 (In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 21.09 min. Rain intensity = 2.53 (In/Hr)
 Total area this stream = 115.81 (Ac.)
 Total Study Area (Main Stream No. 1) = 220.81 (Ac.)
 Total runoff = 258.29 (CFS)

+++++
 Process from Point/Station 35.000 to Point/Station 35.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2

Stream flow area = 115.810(Ac.)
 Runoff from this stream = 258.290(CFS)
 Time of concentration = 21.09 min.
 Rainfall intensity = 2.528(In/Hr)
 Area averaged loss rate (Fm) = 0.0380(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.2280
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	194.884	19.12	2.681
2	258.290	21.09	2.528
$Q_{max}(1) =$			
	1.000 * 1.000 *	194.884) +	
	1.061 * 0.907 *	258.290) + =	443.461
$Q_{max}(2) =$			
	0.937 * 1.000 *	194.884) +	
	1.000 * 1.000 *	258.290) + =	440.941

Total of 2 streams to confluence:
 Flow rates before confluence point:
 194.884 258.290

Maximum flow rates at confluence using above data:
 443.461 440.941

Area of streams before confluence:
 79.020 115.810

Effective area values after confluence:
 184.019 194.830

Results of confluence:

Total flow rate = 443.461(CFS)
 Time of concentration = 19.121 min.
 Effective stream area after confluence = 184.019(Ac.)
 Stream Area average Pervious fraction(Ap) = 0.314
 Stream Area average soil loss rate(Fm) = 0.121(In/Hr)
 Study area (this main stream) = 194.83(Ac.)

+++++
 Process from Point/Station 35.000 to Point/Station 38.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1041.000(Ft.)
 Downstream point/station elevation = 1035.000(Ft.)
 Pipe length = 1320.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 443.461(CFS)
 Given pipe size = 84.00(In.)
 Calculated individual pipe flow = 443.461(CFS)
 Normal flow depth in pipe = 71.25(In.)
 Flow top width inside pipe = 60.28(In.)
 Critical Depth = 66.41(In.)
 Pipe flow velocity = 12.73(Ft/s)
 Travel time through pipe = 1.73 min.
 Time of concentration (TC) = 20.85 min.

+++++
 Process from Point/Station 38.000 to Point/Station 38.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 184.019(Ac.)
 Runoff from this stream = 443.461(CFS)
 Time of concentration = 20.85 min.
 Rainfall intensity = 2.545(In/Hr)
 Area averaged loss rate (Fm) = 0.1208(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.3139

+++++
 Process from Point/Station 38.000 to Point/Station 38.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil(AMC 2) = 71.97
 Adjusted SCS curve number for AMC 3 = 88.58
 Pervious ratio(Ap) = 0.3170 Max loss rate(Fm)= 0.069(In/Hr)
 Rainfall intensity = 2.588(In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 20.28 min. Rain intensity = 2.59(In/Hr)
 Total area this stream = 108.22(Ac.)
 Total Study Area (Main Stream No. 1) = 329.03(Ac.)
 Total runoff = 240.40(CFS)

+++++
 Process from Point/Station 38.000 to Point/Station 38.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 108.220(Ac.)
 Runoff from this stream = 240.400(CFS)
 Time of concentration = 20.28 min.
 Rainfall intensity = 2.588(In/Hr)
 Area averaged loss rate (Fm) = 0.0693(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.3170
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	443.461	20.85	2.545
2	240.400	20.28	2.588
$Q_{max}(1) =$			
	1.000 *	1.000 *	443.461) +
	0.983 *	1.000 *	240.400) + = 679.794
$Q_{max}(2) =$			
	1.018 *	0.973 *	443.461) +
	1.000 *	1.000 *	240.400) + = 679.339

Total of 2 streams to confluence:
 Flow rates before confluence point:
 443.461 240.400
 Maximum flow rates at confluence using above data:
 679.794 679.339
 Area of streams before confluence:
 184.019 108.220
 Effective area values after confluence:
 292.239 287.216

Results of confluence:

Total flow rate = 679.794(CFS)
 Time of concentration = 20.849 min.
 Effective stream area after confluence = 292.239(Ac.)
 Stream Area average Pervious fraction(Ap) = 0.315
 Stream Area average soil loss rate(Fm) = 0.102(In/Hr)
 Study area (this main stream) = 292.24(Ac.)

+++++
 Process from Point/Station 38.000 to Point/Station 39.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1035.000(Ft.)
 Downstream point/station elevation = 1026.600(Ft.)
 Pipe length = 990.00(Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 679.794(CFS)
 Given pipe size = 84.00(In.)
 NOTE: Normal flow is pressure flow in user selected pipe size.
 The approximate hydraulic grade line above the pipe invert is
 10.074(Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 11.207(Ft.)
 Minor friction loss = 7.268(Ft.) K-factor = 1.50
 Pipe flow velocity = 17.66(Ft/s)
 Travel time through pipe = 0.93 min.
 Time of concentration (TC) = 21.78 min.

+++++
 Process from Point/Station 39.000 to Point/Station 39.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 292.239(Ac.)
 Runoff from this stream = 679.794(CFS)
 Time of concentration = 21.78 min.
 Rainfall intensity = 2.479(In/Hr)
 Area averaged loss rate (Fm) = 0.1017(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.3150

+++++
 Process from Point/Station 817.000 to Point/Station 818.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.393(In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000(Ft.)
 Top (of initial area) elevation = 1049.000(Ft.)
 Bottom (of initial area) elevation = 1044.000(Ft.)
 Difference in elevation = 5.000(Ft.)
 Slope = 0.00500 s(%) = 0.50
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 17.789 min.

Rainfall intensity = 2.800 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.774
 Subarea runoff = 10.833 (CFS)
 Total initial stream area = 5.000 (Ac.)
 Previous area fraction = 0.500
 Initial area Fm value = 0.393 (In/Hr)

+++++
 Process from Point/Station 818.000 to Point/Station 819.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1044.000 (Ft.)
 End of street segment elevation = 1042.300 (Ft.)
 Length of street segment = 330.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 16.249 (CFS)
 Depth of flow = 0.466 (Ft.), Average velocity = 2.307 (Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 18.574 (Ft.)
 Flow velocity = 2.31 (Ft/s)
 Travel time = 2.38 min. TC = 20.17 min.
 Adding area flow to street
 RESIDENTIAL (5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil (AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Previous ratio (Ap) = 0.5000 Max loss rate (Fm) = 0.393 (In/Hr)
 Rainfall intensity = 2.596 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.764
 Subarea runoff = 9.001 (CFS) for 5.000 (Ac.)
 Total runoff = 19.834 (CFS)
 Effective area this stream = 10.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 339.03 (Ac.)
 Area averaged Fm value = 0.393 (In/Hr)
 Street flow at end of street = 19.834 (CFS)
 Half street flow at end of street = 9.917 (CFS)
 Depth of flow = 0.496 (Ft.), Average velocity = 2.426 (Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000 (Ft.)

+++++
 Process from Point/Station 819.000 to Point/Station 820.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1042.300(Ft.)
 End of street segment elevation = 1039.000(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 20.000(Ft.)
 Distance from crown to crossfall grade break = 18.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 29.751(CFS)
 Depth of flow = 0.555(Ft.), Average velocity = 2.825(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 20.000(Ft.)
 Flow velocity = 2.82(Ft/s)
 Travel time = 3.89 min. TC = 24.07 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm) = 0.393(In/Hr)
 Rainfall intensity = 2.335(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.749
 Subarea runoff = 15.138(CFS) for 10.000(Ac.)
 Total runoff = 34.972(CFS)
 Effective area this stream = 20.00(Ac.)
 Total Study Area (Main Stream No. 1) = 349.03(Ac.)
 Area averaged Fm value = 0.393(In/Hr)
 Street flow at end of street = 34.972(CFS)
 Half street flow at end of street = 17.486(CFS)
 Depth of flow = 0.582(Ft.), Average velocity = 3.012(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown) = 20.000(Ft.)

+++++
 Process from Point/Station 820.000 to Point/Station 821.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1039.000(Ft.)
 End of street segment elevation = 1037.000(Ft.)
 Length of street segment = 330.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 42.000(Ft.)
 Distance from crown to crossfall grade break = 40.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street

Distance from curb to property line = 13.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 43.715(CFS)
 Depth of flow = 0.792(Ft.), Average velocity = 3.469(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 6.26(Ft.)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 34.842(Ft.)
 Flow velocity = 3.47(Ft/s)
 Travel time = 1.59 min. TC = 25.65 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Previous ratio(A_p) = 0.5000 Max loss rate(F_m) = 0.393(In/Hr)
 Rainfall intensity = 2.248(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is $C = 0.743$
 Subarea runoff = 15.118(CFS) for 10.000(Ac.)
 Total runoff = 50.090(CFS)
 Effective area this stream = 30.00(Ac.)
 Total Study Area (Main Stream No. 1) = 359.03(Ac.)
 Area averaged F_m value = 0.393(In/Hr)
 Street flow at end of street = 50.090(CFS)
 Half street flow at end of street = 50.090(CFS)
 Depth of flow = 0.827(Ft.), Average velocity = 3.545(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 8.04(Ft.)
 Flow width (from curb towards crown) = 36.623(Ft.)

+++++
 Process from Point/Station 821.000 to Point/Station 821.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 30.000(Ac.)
 Runoff from this stream = 50.090(CFS)
 Time of concentration = 25.65 min.
 Rainfall intensity = 2.248(In/Hr)
 Area averaged loss rate (F_m) = 0.3926(In/Hr)
 Area averaged Previous ratio (A_p) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	679.794	21.78	2.479
2	50.090	25.65	2.248
$Q_{max}(1) =$	$1.000 * 1.000 * 679.794) +$		

$Q_{max}(2) = 1.125 * 0.849 * 50.090) + = 727.640$
 $0.903 * 1.000 * 679.794) +$
 $1.000 * 1.000 * 50.090) + = 663.645$

Total of 2 streams to confluence:

Flow rates before confluence point:

679.794 50.090

Maximum flow rates at confluence using above data:

727.640 663.645

Area of streams before confluence:

292.239 30.000

Effective area values after confluence:

317.714 322.239

Results of confluence:

Total flow rate = 727.640(CFS)

Time of concentration = 21.783 min.

Effective stream area after confluence = 317.714(Ac.)

Stream Area average Pervious fraction(Ap) = 0.332

Stream Area average soil loss rate(Fm) = 0.129(In/Hr)

Study area (this main stream) = 322.24(Ac.)

+++++
Process from Point/Station 39.000 to Point/Station 40.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1026.600(Ft.)

Downstream point/station elevation = 1012.800(Ft.)

Pipe length = 1720.00(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 727.640(CFS)

Given pipe size = 84.00(In.)

NOTE: Normal flow is pressure flow in user selected pipe size.

The approximate hydraulic grade line above the pipe invert is
16.834(Ft.) at the headworks or inlet of the pipe(s)

Pipe friction loss = 22.307(Ft.)

Minor friction loss = 8.327(Ft.) K-factor = 1.50

Pipe flow velocity = 18.91(Ft/s)

Travel time through pipe = 1.52 min.

Time of concentration (TC) = 23.30 min.

+++++
Process from Point/Station 40.000 to Point/Station 40.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1

Stream flow area = 317.714(Ac.)

Runoff from this stream = 727.640(CFS)

Time of concentration = 23.30 min.

Rainfall intensity = 2.381(In/Hr)

Area averaged loss rate (Fm) = 0.1288(In/Hr)

Area averaged Pervious ratio (Ap) = 0.3323

+++++
Process from Point/Station 822.000 to Point/Station 823.000
**** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)

Decimal fraction soil group A = 1.000

Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.393 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 1000.000 (Ft.)
 Top (of initial area) elevation = 1037.700 (Ft.)
 Bottom (of initial area) elevation = 1034.300 (Ft.)
 Difference in elevation = 3.400 (Ft.)
 Slope = 0.00340 s(%) = 0.34
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 19.216 min.
 Rainfall intensity = 2.673 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.768
 Subarea runoff = 10.263 (CFS)
 Total initial stream area = 5.000 (Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.393 (In/Hr)

+++++
 Process from Point/Station 823.000 to Point/Station 824.000
 *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 1034.300 (Ft.)
 End of street segment elevation = 1032.000 (Ft.)
 Length of street segment = 660.000 (Ft.)
 Height of curb above gutter flowline = 8.0 (In.)
 Width of half street (curb to crown) = 20.000 (Ft.)
 Distance from crown to crossfall grade break = 18.500 (Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [2] side(s) of the street
 Distance from curb to property line = 10.000 (Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500 (Ft.)
 Gutter hike from flowline = 1.500 (In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 15.394 (CFS)
 Depth of flow = 0.487 (Ft.), Average velocity = 1.965 (Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 19.610 (Ft.)
 Flow velocity = 1.97 (Ft/s)
 Travel time = 5.60 min. TC = 24.81 min.
 Adding area flow to street
 RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.393 (In/Hr)
 Rainfall intensity = 2.293 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.746
 Subarea runoff = 6.842 (CFS) for 5.000 (Ac.)

Total runoff = 17.105(CFS)
 Effective area this stream = 10.00(Ac.)
 Total Study Area (Main Stream No. 1) = 369.03(Ac.)
 Area averaged Fm value = 0.393(In/Hr)
 Street flow at end of street = 17.105(CFS)
 Half street flow at end of street = 8.552(CFS)
 Depth of flow = 0.502(Ft.), Average velocity = 2.034(Ft/s)
 Note: depth of flow exceeds top of street crown.
 Flow width (from curb towards crown)= 20.000(Ft.)

++++++
 Process from Point/Station 824.000 to Point/Station 825.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1032.000(Ft.)
 End of street segment elevation = 1027.000(Ft.)
 Length of street segment = 660.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 42.000(Ft.)
 Distance from crown to crossfall grade break = 40.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 25.657(CFS)
 Depth of flow = 0.630(Ft.), Average velocity = 3.548(Ft/s)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 26.759(Ft.)
 Flow velocity = 3.55(Ft/s)
 Travel time = 3.10 min. TC = 27.91 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Previous ratio(A_p) = 0.3500 Max loss rate(Fm)= 0.275(In/Hr)
 Rainfall intensity = 2.137(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified rational method) ($Q=KCIA$) is C = 0.759
 Subarea runoff = 15.349(CFS) for 10.000(Ac.)
 Total runoff = 32.454(CFS)
 Effective area this stream = 20.00(Ac.)
 Total Study Area (Main Stream No. 1) = 379.03(Ac.)
 Area averaged Fm value = 0.334(In/Hr)
 Street flow at end of street = 32.454(CFS)
 Half street flow at end of street = 32.454(CFS)
 Depth of flow = 0.684(Ft.), Average velocity = 3.711(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 0.86(Ft.)
 Flow width (from curb towards crown)= 29.439(Ft.)

+++++
 Process from Point/Station 825.000 to Point/Station 826.000
 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 1027.000(Ft.)
 End of street segment elevation = 1023.000(Ft.)
 Length of street segment = 750.000(Ft.)
 Height of curb above gutter flowline = 8.0(In.)
 Width of half street (curb to crown) = 42.000(Ft.)
 Distance from crown to crossfall grade break = 40.500(Ft.)
 Slope from gutter to grade break (v/hz) = 0.020
 Slope from grade break to crown (v/hz) = 0.020
 Street flow is on [1] side(s) of the street
 Distance from curb to property line = 13.000(Ft.)
 Slope from curb to property line (v/hz) = 0.020
 Gutter width = 1.500(Ft.)
 Gutter hike from flowline = 1.500(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
 Estimated mean flow rate at midpoint of street = 37.322(CFS)
 Depth of flow = 0.767(Ft.), Average velocity = 3.210(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 5.03(Ft.)
 Streetflow hydraulics at midpoint of street travel:
 Halfstreet flow width = 33.617(Ft.)
 Flow velocity = 3.21(Ft/s)
 Travel time = 3.89 min. TC = 31.81 min.
 Adding area flow to street
 CONDOMINIUM subarea type
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Previous ratio(A_p) = 0.3500 Max loss rate(F_m) = 0.275(In/Hr)
 Rainfall intensity = 1.976(In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area, (total area with modified
 rational method) ($Q=KCIA$) is $C = 0.754$
 Subarea runoff = 6.286(CFS) for 6.000(Ac.)
 Total runoff = 38.740(CFS)
 Effective area this stream = 26.00(Ac.)
 Total Study Area (Main Stream No. 1) = 385.03(Ac.)
 Area averaged F_m value = 0.320(In/Hr)
 Street flow at end of street = 38.740(CFS)
 Half street flow at end of street = 38.740(CFS)
 Depth of flow = 0.777(Ft.), Average velocity = 3.227(Ft/s)
 Warning: depth of flow exceeds top of curb
 Distance that curb overflow reaches into property = 5.52(Ft.)
 Flow width (from curb towards crown) = 34.101(Ft.)

+++++
 Process from Point/Station 826.000 to Point/Station 826.000
 *** CONFLUENCE OF MINOR STREAMS ***

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 26.000(Ac.)
 Runoff from this stream = 38.740(CFS)

Time of concentration = 31.81 min.
 Rainfall intensity = 1.976 (In/Hr)
 Area averaged loss rate (Fm) = 0.3201 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.4077
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	727.640	23.30	2.381
2	38.740	31.81	1.976
$Q_{max}(1) =$	1.000 * 1.000 * 727.640) + 1.245 * 0.733 * 38.740) + =		762.972
$Q_{max}(2) =$	0.820 * 1.000 * 727.640) + 1.000 * 1.000 * 38.740) + =		635.338

Total of 2 streams to confluence:

Flow rates before confluence point:
 727.640 38.740

Maximum flow rates at confluence using above data:
 762.972 635.338

Area of streams before confluence:
 317.714 26.000

Effective area values after confluence:
 336.759 343.714

Results of confluence:

Total flow rate = 762.972 (CFS)
 Time of concentration = 23.299 min.
 Effective stream area after confluence = 336.759 (Ac.)
 Stream Area average Pervious fraction (Ap) = 0.338
 Stream Area average soil loss rate (Fm) = 0.143 (In/Hr)
 Study area (this main stream) = 343.71 (Ac.)

+++++
 Process from Point/Station 40.000 to Point/Station 94.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1011.300 (Ft.)
 Downstream point/station elevation = 1004.000 (Ft.)
 Pipe length = 900.00 (Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 762.972 (CFS)
 Given pipe size = 102.00 (In.)
 Calculated individual pipe flow = 762.972 (CFS)
 Normal flow depth in pipe = 68.44 (In.)
 Flow top width inside pipe = 95.85 (In.)
 Critical Depth = 82.80 (In.)
 Pipe flow velocity = 18.87 (Ft/s)
 Travel time through pipe = 0.80 min.
 Time of concentration (TC) = 24.09 min.

+++++
 Process from Point/Station 94.000 to Point/Station 94.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 336.759 (Ac.)

Runoff from this stream = 762.972(CFS)
 Time of concentration = 24.09 min.
 Rainfall intensity = 2.334 (In/Hr)
 Area averaged loss rate (Fm) = 0.1432 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.3380

+++++
 Process from Point/Station 827.000 to Point/Station 828.000
 **** INITIAL AREA EVALUATION ****

RESIDENTIAL(5 - 7 dwl/acre)
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 32.00
 Adjusted SCS curve number for AMC 3 = 52.00
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.393 (In/Hr)
 Initial subarea data:
 Initial area flow distance = 900.000(Ft.)
 Top (of initial area) elevation = 1023.000(Ft.)
 Bottom (of initial area) elevation = 1014.000(Ft.)
 Difference in elevation = 9.000(Ft.)
 Slope = 0.01000 s(%)= 1.00
 $TC = k(0.389) * [(length^3) / (elevation change)]^{0.2}$
 Initial area time of concentration = 14.847 min.
 Rainfall intensity = 3.121 (In/Hr) for a 100.0 year storm
 Effective runoff coefficient used for area (Q=KCIA) is C = 0.787
 Subarea runoff = 14.731(CFS)
 Total initial stream area = 6.000(Ac.)
 Pervious area fraction = 0.500
 Initial area Fm value = 0.393 (In/Hr)

+++++
 Process from Point/Station 828.000 to Point/Station 828.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 6.000(Ac.)
 Runoff from this stream = 14.731(CFS)
 Time of concentration = 14.85 min.
 Rainfall intensity = 3.121 (In/Hr)
 Area averaged loss rate (Fm) = 0.3926 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	762.972	24.09	2.334
2	14.731	14.85	3.121
$Q_{max}(1) = 1.000 * 1.000 * 762.972) + 0.712 * 1.000 * 14.731) + = 773.454$			
$Q_{max}(2) = 1.359 * 0.616 * 762.972) + 1.000 * 1.000 * 14.731) + = 653.732$			

Total of 2 streams to confluence:

Flow rates before confluence point:
762.972 14.731

Maximum flow rates at confluence using above data:

773.454 653.732

Area of streams before confluence:

336.759 6.000

Effective area values after confluence:

342.759 213.515

Results of confluence:

Total flow rate = 773.454 (CFS)

Time of concentration = 24.094 min.

Effective stream area after confluence = 342.759 (Ac.)

Stream Area average Pervious fraction(A_p) = 0.341

Stream Area average soil loss rate(F_m) = 0.148 (In/Hr)

Study area (this main stream) = 342.76 (Ac.)

End of computations, Total Study Area = 391.03 (Ac.)

The following figures may

be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction(A_p) = 0.343

Area averaged SCS curve number = 59.4

DECLEZ CHL.

San Bernardino County Rational Hydrology Program

(Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
Rational Hydrology Study Date: 01/12/05-----
FONTANA / DECLEZ CHANNEL HYDROLOGY
100 YEAR STORM
JN 04339-----
Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
10 Year storm 1 hour rainfall = 0.930 (In.)
100 Year storm 1 hour rainfall = 1.350 (In.)
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.350 (In.)
Slope used for rainfall intensity curve b = 0.6000
Soil antecedent moisture condition (AMC) = 3+++++
Process from Point/Station 93.000 to Point/Station 93.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****-----
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil (AMC 2) = 99.00
Adjusted SCS curve number for AMC 3 = 99.80
Pervious ratio (Ap) = 0.5090 Max loss rate (Fm) = 0.002 (In/Hr)
Rainfall intensity = 2.989 (In/Hr) for a 100.0 year storm
User specified values are as follows:
TC = 15.95 min. Rain intensity = 2.99 (In/Hr)
Total area this stream = 784.34 (Ac.)
Total Study Area (Main Stream No. 1) = 784.34 (Ac.)
Total runoff = 2625.02 (CFS)+++++
Process from Point/Station 93.000 to Point/Station 94.000
**** IMPROVED CHANNEL TRAVEL TIME ****-----
Upstream point elevation = 1005.500 (Ft.)
Downstream point elevation = 1004.000 (Ft.)
Channel length thru subarea = 500.000 (Ft.)
Channel base width = 24.000 (Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Manning's 'N' = 0.015
Maximum depth of channel = 9.000 (Ft.)
Flow (q) thru subarea = 2625.020 (CFS)
Depth of flow = 7.337 (Ft.), Average velocity = 14.906 (Ft/s)
Channel flow top width = 24.000 (Ft.)
Flow Velocity = 14.91 (Ft/s)
Travel time = 0.56 min.

Time of concentration = 16.51 min.
 Critical depth = 7.188(Ft.)

+++++
 Process from Point/Station 94.000 to Point/Station 94.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 784.340(Ac.)
 Runoff from this stream = 2625.020(CFS)
 Time of concentration = 16.51 min.
 Rainfall intensity = 2.928(In/Hr)
 Area averaged loss rate (Fm) = 0.0020(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5090

+++++
 Process from Point/Station 94.000 to Point/Station 94.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil(AMC 2) = 91.70
 Adjusted SCS curve number for AMC 3 = 98.34
 Pervious ratio(Ap) = 0.3410 Max loss rate(Fm) = 0.011(In/Hr)
 Rainfall intensity = 2.334(In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 24.09 min. Rain intensity = 2.33(In/Hr)
 Total area this stream = 342.76(Ac.)
 Total Study Area (Main Stream No. 1) = 1127.10(Ac.)
 Total runoff = 773.45(CFS)

+++++
 Process from Point/Station 94.000 to Point/Station 94.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 342.760(Ac.)
 Runoff from this stream = 773.450(CFS)
 Time of concentration = 24.09 min.
 Rainfall intensity = 2.334(In/Hr)
 Area averaged loss rate (Fm) = 0.0113(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.3410
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
------------	-----------------	----------	----------------------------

1	2625.020	16.51	2.928
2	773.450	24.09	2.334

Qmax(1) =

$$1.000 * 1.000 * 2625.020) + 1.256 * 0.685 * 773.450) + = 3290.619$$

Qmax(2) =

$$0.797 * 1.000 * 2625.020) + 1.000 * 1.000 * 773.450) + = 2865.570$$

Total of 2 streams to confluence:

Flow rates before confluence point:

2625.020 773.450

Maximum flow rates at confluence using above data:

3290.619 2865.570

Area of streams before confluence:

784.340 342.760

Effective area values after confluence:

1019.236 1127.100

Results of confluence:

Total flow rate = 3290.619(CFS)

Time of concentration = 16.509 min.

Effective stream area after confluence = 1019.236(Ac.)

Stream Area average Pervious fraction(A_p) = 0.458

Stream Area average soil loss rate(F_m) = 0.005(In/Hr)

Study area (this main stream) = 1127.10(Ac.)

End of computations, Total Study Area = 1127.10 (Ac.)

The following figures may

be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction(A_p) = 0.458

Area averaged SCS curve number = 96.8

LINE '4x9' RCB

AFTER

DETENTION

San Bernardino County Rational Hydrology Program

(Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
Rational Hydrology Study Date: 01/13/05FONTANA / LINE JURUPA AVE. 14'x 9' RCB HDROLOGY W/DET. @ SIERRA AVE.
100 YEAR STORM
JN 04339

Hall & Forman, Inc. - S/N 950

***** Hydrology Study Control Information *****

Rational hydrology study storm event year is 100.0
 10 Year storm 1 hour rainfall = 0.930 (In.)
 100 Year storm 1 hour rainfall = 1.350 (In.)
 Computed rainfall intensity:
 Storm year = 100.00 1 hour rainfall = 1.350 (In.)
 Slope used for rainfall intensity curve b = 0.6000
 Soil antecedent moisture condition (AMC) = 3

+++++
 Process from Point/Station 71.000 to Point/Station 71.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil (AMC 2) = 98.86
 Adjusted SCS curve number for AMC 3 = 99.77
 Pervious ratio (Ap) = 0.2610 Max loss rate (Fm) = 0.001 (In/Hr)
 Rainfall intensity = 2.394 (In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 23.09 min. Rain intensity = 2.39 (In/Hr)
 Total area this stream = 192.55 (Ac.)
 Total Study Area (Main Stream No. 1) = 192.55 (Ac.)
 Total runoff = 450.00 (CFS)

+++++
 Process from Point/Station 71.000 to Point/Station 89.000
 **** PIPEFLOW TRAVEL TIME (User specified size) ****

Upstream point/station elevation = 1030.000 (Ft.)
 Downstream point/station elevation = 1025.000 (Ft.)
 Pipe length = 680.00 (Ft.) Manning's N = 0.013
 No. of pipes = 1 Required pipe flow = 450.000 (CFS)
 Given pipe size = 54.00 (In.)
 NOTE: Normal flow is pressure flow in user selected pipe size.
 The approximate hydraulic grade line above the pipe invert is
 49.243 (Ft.) at the headworks or inlet of the pipe(s)
 Pipe friction loss = 35.596 (Ft.)
 Minor friction loss = 18.647 (Ft.) K-factor = 1.50
 Pipe flow velocity = 28.29 (Ft/s)
 Travel time through pipe = 0.40 min.
 Time of concentration (TC) = 23.49 min.

+++++
Process from Point/Station 89.000 to Point/Station 89.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 192.550(Ac.)
 Runoff from this stream = 450.000(CFS)
 Time of concentration = 23.49 min.
 Rainfall intensity = 2.370(In/Hr)
 Area averaged loss rate (Fm) = 0.0012(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.2610

+++++
Process from Point/Station 89.000 to Point/Station 89.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil(AMC 2) = 99.51
 Adjusted SCS curve number for AMC 3 = 99.90
 Pervious ratio(Ap) = 0.8280 Max loss rate(Fm)= 0.002(In/Hr)
 Rainfall intensity = 3.539(In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 12.04 min. Rain intensity = 3.54(In/Hr)
 Total area this stream = 284.04(Ac.)
 Total Study Area (Main Stream No. 1) = 476.59(Ac.)
 Total runoff = 1063.00(CFS)

+++++
Process from Point/Station 89.000 to Point/Station 89.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 284.040(Ac.)
 Runoff from this stream = 1063.000(CFS)
 Time of concentration = 12.04 min.
 Rainfall intensity = 3.539(In/Hr)
 Area averaged loss rate (Fm) = 0.0016(In/Hr)
 Area averaged Pervious ratio (Ap) = 0.8280
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	450.000	23.49	2.370
2	1063.000	12.04	3.539
$Q_{max}(1) =$			
	1.000 * 1.000 * 450.000) +		
	0.669 * 1.000 * 1063.000) + =		1161.665
$Q_{max}(2) =$			
	1.494 * 0.513 * 450.000) +		
	1.000 * 1.000 * 1063.000) + =		1407.491

Total of 2 streams to confluence:
 Flow rates before confluence point:
 450.000 1063.000

Maximum flow rates at confluence using above data:

1161.665 1407.491

Area of streams before confluence:

192.550 284.040

Effective area values after confluence:

476.590 382.731

Results of confluence:

Total flow rate = 1407.491(CFS)

Time of concentration = 12.040 min.

Effective stream area after confluence = 382.731(Ac.)

Stream Area average Pervious fraction(Ap) = 0.599

Stream Area average soil loss rate(Fm) = 0.001(In/Hr)

Study area (this main stream) = 476.59(Ac.)

+++++
Process from Point/Station 89.000 to Point/Station 90.000

**** IMPROVED CHANNEL TRAVEL TIME ****

Covered channel

Upstream point elevation = 1028.200(Ft.)

Downstream point elevation = 1022.300(Ft.)

Channel length thru subarea = 1320.000(Ft.)

Channel base width = 14.000(Ft.)

Slope or 'Z' of left channel bank = 0.000

Slope or 'Z' of right channel bank = 0.000

Manning's 'N' = 0.013

Maximum depth of channel = 9.000(Ft.)

Flow(q) thru subarea = 1407.491(CFS)

Depth of flow = 6.014(Ft.), Average velocity = 16.716(Ft/s)

Channel flow top width = 14.000(Ft.)

Flow Velocity = 16.72(Ft/s)

Travel time = 1.32 min.

Time of concentration = 13.36 min.

Critical depth = 6.813(Ft.)

+++++
Process from Point/Station 90.000 to Point/Station 90.000

**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1

Stream flow area = 382.731(Ac.)

Runoff from this stream = 1407.491(CFS)

Time of concentration = 13.36 min.

Rainfall intensity = 3.325(In/Hr)

Area averaged loss rate (Fm) = 0.0014(In/Hr)

Area averaged Pervious ratio (Ap) = 0.5989

+++++
Process from Point/Station 90.000 to Point/Station 90.000

**** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user

USER INPUT of soil data for subarea

SCS curve number for soil(AMC 2) = 91.44

Adjusted SCS curve number for AMC 3 = 98.29

Pervious ratio(Ap) = 0.1950 Max loss rate(Fm) = 0.007(In/Hr)

Rainfall intensity = 2.536(In/Hr) for a 100.0 year storm

User specified values are as follows:

TC = 20.98 min. Rain intensity = 2.54 (In/Hr)
 Total area this stream = 76.70 (Ac.)
 Total Study Area (Main Stream No. 1) = 553.29 (Ac.)
 Total runoff = 178.54 (CFS)

+++++
 Process from Point/Station 90.000 to Point/Station 90.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2
 Stream flow area = 76.700 (Ac.)
 Runoff from this stream = 178.540 (CFS)
 Time of concentration = 20.98 min.
 Rainfall intensity = 2.536 (In/Hr)
 Area averaged loss rate (Fm) = 0.0066 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.1950

+++++
 Process from Point/Station 90.000 to Point/Station 90.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil(AMC 2) = 98.56
 Adjusted SCS curve number for AMC 3 = 99.71
 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.006 (In/Hr)
 Rainfall intensity = 3.334 (In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 13.30 min. Rain intensity = 3.33 (In/Hr)
 Total area this stream = 25.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 578.29 (Ac.)
 Total runoff = 73.53 (CFS)

+++++
 Process from Point/Station 90.000 to Point/Station 90.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3
 Stream flow area = 25.000 (Ac.)
 Runoff from this stream = 73.530 (CFS)
 Time of concentration = 13.30 min.
 Rainfall intensity = 3.334 (In/Hr)
 Area averaged loss rate (Fm) = 0.0058 (In/Hr)
 Area averaged Pervious ratio (Ap) = 1.0000

+++++
 Process from Point/Station 90.000 to Point/Station 90.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user
 USER INPUT of soil data for subarea
 SCS curve number for soil(AMC 2) = 91.48
 Adjusted SCS curve number for AMC 3 = 98.30
 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.017 (In/Hr)
 Rainfall intensity = 2.281 (In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 25.03 min. Rain intensity = 2.28 (In/Hr)

Total area this stream = 12.00 (Ac.)
 Total Study Area (Main Stream No. 1) = 590.29 (Ac.)
 Total runoff = 22.26 (CFS)

+++++
 Process from Point/Station 90.000 to Point/Station 90.000
 *** CONFLUENCE OF MINOR STREAMS ***

Along Main Stream number: 1 in normal stream number 4
 Stream flow area = 12.000 (Ac.)
 Runoff from this stream = 22.260 (CFS)
 Time of concentration = 25.03 min.
 Rainfall intensity = 2.281 (In/Hr)
 Area averaged loss rate (Fm) = 0.0169 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5000
 Summary of stream data:

Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1	1407.491	13.36	3.325
2	178.540	20.98	2.536
3	73.530	13.30	3.334
4	22.260	25.03	2.281
Qmax(1) =			
	1.000 *	1.000 *	1407.491) +
	1.312 *	0.637 *	178.540) +
	0.997 *	1.000 *	73.530) +
	1.461 *	0.534 *	22.260) + = 1647.317
Qmax(2) =			
	0.763 *	1.000 *	1407.491) +
	1.000 *	1.000 *	178.540) +
	0.760 *	1.000 *	73.530) +
	1.113 *	0.838 *	22.260) + = 1328.481
Qmax(3) =			
	1.003 *	0.996 *	1407.491) +
	1.315 *	0.634 *	178.540) +
	1.000 *	1.000 *	73.530) +
	1.465 *	0.531 *	22.260) + = 1644.856
Qmax(4) =			
	0.686 *	1.000 *	1407.491) +
	0.899 *	1.000 *	178.540) +
	0.684 *	1.000 *	73.530) +
	1.000 *	1.000 *	22.260) + = 1198.451

Total of 4 streams to confluence:

Flow rates before confluence point:

1407.491 178.540 73.530 22.260

Maximum flow rates at confluence using above data:

1647.317 1328.481 1644.856 1198.451

Area of streams before confluence:

382.731 76.700 25.000 12.000

Effective area values after confluence:

462.962 494.489 461.122 496.431

Results of confluence:

Total flow rate = 1647.317 (CFS)

Time of concentration = 13.356 min.

Effective stream area after confluence = 462.962 (Ac.)

Stream Area average Pervious fraction (Ap) = 0.554

Stream Area average soil loss rate(Fm) = 0.003 (In/Hr)
 Study area (this main stream) = 496.43 (Ac.)

+++++
 Process from Point/Station 90.000 to Point/Station 91.000
 **** IMPROVED CHANNEL TRAVEL TIME ****

Covered channel

Upstream point elevation = 1022.300 (Ft.)
 Downstream point elevation = 1013.100 (Ft.)
 Channel length thru subarea = 1320.000 (Ft.)
 Channel base width = 14.000 (Ft.)
 Slope or 'Z' of left channel bank = 0.000
 Slope or 'Z' of right channel bank = 0.000
 Manning's 'N' = 0.130
 Maximum depth of channel = 9.000 (Ft.)
 Flow(q) thru subarea = 1647.317 (CFS)
 Pressure flow condition in covered channel:
 Wetted perimeter = 46.00 (Ft.) Flow area = 126.00 (Sq.Ft)
 Hydraulic grade line required at box inlet = 799.184 (Ft.)
 Friction loss = 804.402 (Ft.)
 Minor Friction loss = 3.981 (Ft.) K-Factor = 1.500
 Flow Velocity = 13.07 (Ft/s)
 Travel time = 1.68 min.
 Time of concentration = 16.72 min.

+++++
 Process from Point/Station 91.000 to Point/Station 91.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Soil classification AP and SCS values input by user

USER INPUT of soil data for subarea
 SCS curve number for soil (AMC 2) = 99.95
 Adjusted SCS curve number for AMC 3 = 99.99
 Pervious ratio(Ap) = 0.5540 Max loss rate(Fm) = 0.000 (In/Hr)
 Rainfall intensity = 3.097 (In/Hr) for a 100.0 year storm
 User specified values are as follows:
 TC = 15.04 min. Rain intensity = 3.10 (In/Hr)
 Total area this stream = 462.96 (Ac.)
 Total Study Area (Main Stream No. 1) = 1053.25 (Ac.)
 Total runoff = 1647.79 (CFS)

+++++
 Process from Point/Station 91.000 to Point/Station 91.000
 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
 Stream flow area = 462.960 (Ac.)
 Runoff from this stream = 1647.790 (CFS)
 Time of concentration = 15.04 min.
 Rainfall intensity = 3.097 (In/Hr)
 Area averaged loss rate (Fm) = 0.0001 (In/Hr)
 Area averaged Pervious ratio (Ap) = 0.5540

+++++
 Process from Point/Station 91.000 to Point/Station 91.000
 **** USER DEFINED FLOW INFORMATION AT A POINT ****